Improving User Interface Generation Models from Designer

Feedback

Jason Wu, Amanda Swearngin, Arun Krishna Vajjala, Alan Leung, Jeffrey Nichols, Titus Barik
Apple
Seattle, USA
jason_wu8,aswearngin,a_krishnavajjala,alleu,jwnichols, tbarik@apple.com

N
Input Prompts Original Uls Designers Improved Uls Preference Data Improved Uls Original Uls
—] BN ——]
.......... e —
&) form fields not ali (c] (¢] (c] - -
Generate a Ul in HTML with the = o orm fields not aligned >
following description: settings —> - labels should be on — = = < -
page of an e-reader app single line LLM Fix =
_ Comments _Incr, ea%e
Noreasy 0@
= m . m L rewardts7) =max {0, s —s"+m
Generate a Ul in HTML with the - . =1 butions should @ revard { }
following description: project
management app assigning L - zz;:vﬁ;hit N
tasks = Sketches = g LLM Fix /\
Base Code Generate a Ul in HTML with the . / P’ge:?':f;:?::w
Generator following description: control ~ ___ =— = — ; p
panel for a home security - k D“F"Q"e' < .
system Revisions x Reward Fine-tuned
Model Model

1. On-Policy Sampling

2. Designer-Aligned Feedback

3. Model Finetuning

Figure 1: An overview of our approach for improving Ul generation models from designer feedback. First, we conduct on-policy
sampling by generating UI samples using a code LLM. Next, designers employ familiar workflows such as commenting, sketching, and direct
revisions to fix design flaws and make improvements. Using the resulting preference dataset, we fine-tune the code LLM to increase the
relative probability of generating code that resembles the improved Uls over code that resembles the original Uls.

Abstract

Despite being trained on vast amounts of data, most LLMs are
unable to reliably generate well-designed UlIs. Designer feedback is
essential to improving performance on UI generation; however, we
find that existing RLHF methods based on ratings or rankings are
not well-aligned with with designers’ workflows and ignore the rich
rationale used to critique and improve UI designs. In this paper, we
investigate several approaches for designers to give feedback to UI
generation models, using familiar interactions such as commenting,
sketching and direct manipulation. We first perform a study with
21 designers where they gave feedback using these interactions,
which resulted in ~1500 design annotations. We then use this data
to finetune a series of LLMs to generate higher quality Uls. Finally,
we evaluate these models with human judges, and we find that
our designer-aligned approaches outperform models trained with
traditional ranking feedback and all tested baselines, including
GPT-5.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Conference acronym *XX, Woodstock, NY

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2018/06

https://doi.org/XXXXXXX.XXXXXXX

CCS Concepts

« Computing methodologies — Learning from demonstrations;
Learning from implicit feedback; Learning from critiques; « Human-
centered computing — Graphical user interfaces.

Keywords

UI modeling, reinforcement learning form human feedback, UI
generation, UI assessment

ACM Reference Format:

Jason Wu, Amanda Swearngin, Arun Krishna Vajjala, Alan Leung, Jeffrey
Nichols, Titus Barik. 2018. Improving User Interface Generation Models
from Designer Feedback. In Proceedings of Make sure to enter the correct
conference title from your rights confirmation email (Conference acronym "XX).
ACM, New York, NY, USA, 16 pages. https://doi.org/XXXXXXX XXXXXXX

1 Introduction

Despite being trained on vast amounts of data, today’s large lan-
guage models (LLMs) are unable to reliably generate well-designed
user interfaces (Uls) [47]. This suggests that current datasets do
not capture what constitutes “good” UI design, much of which re-
sides in tacit domain knowledge [38]. Although general heuristics
exist [27, 37], applying them effectively requires experience to un-
derstand and navigate subtle trade-offs. As both prospective users
and domain experts, designers are well positioned to inform the
training of UI generation models. How can models effectively learn
from designers’ expertise?

Machine-learning approaches, such as reinforcement learning
from human feedback (RLHF) [30], have been developed to steer

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

models toward human-preferred responses; however, collecting
data required to represent design knowledge is difficult. For ex-
ample, prior work applied rubric-guided ratings and rankings to
collect designer feedback [9, 25] but found that subjectivity within
the guidelines and differing preferences among designers led to a
noisy learning signal for model training [9, 46]. Moreover, these in-
terfaces elicit judgments about existing Uls rather than the changes
designers would make, such as concrete edits to layout, colors, and
typography.

To understand which types of data are most effective for training
models, we investigate designers’ common workflows. For example,
previous work [15] has shown that designers are already effective
at communicating design knowledge as part of their day-to-day
job through activities such as design reviews, white-boarding, and
using design software (e.g., Figma, Sketch). These activities produce
artifacts such as i) natural language comments, ii) visually-grounded
annotations, and iii) low-level design revisions (e.g., before and
after a designer’s edits) that might be useful for model training.
To this end, we develop interfaces for model training based on
these activities and introduce techniques that transform them into
machine-learnable preference data for UI generation models.

To validate our approach, we performed a designer feedback
study with 21 professional designers at a large technology company,
which led to a dataset of ~1500 training examples. To measure
the quality of this generated data, we conducted a study where
we found that data collected from designer-aligned interfaces led
to higher agreement rates than data collected from conventional
ranking interfaces. To demonstrate the utility of our dataset, we fine-
tuned several existing code generation models. First, we found that
supervision derived from designers’ sketch and revision feedback
yielded significant gains over both untuned baselines and models
tuned on conventional ranking feedback. Second, applying designer
supervision to a strong open-source model enables it to outperform
all tested baselines, including a larger, state-of-the-art, proprietary
reasoning model, GPT-5.

To summarize, this paper makes the following contributions:

(1) Techniques for transforming designer comments, sketches,
and revisions into machine-learnable preference pairs.

(2) A dataset of ~1500 Ul screens associated with design feedback
collected from twenty one designers. An analysis of this data
shows Ul preference pairs generated from natural designer
feedback workflows have lower levels of disagreement than
conventional ranking feedback.

(3) A validation of our approach that shows how designer feed-
back improves open-source UI generation models. An arena-
style evaluation showed that some forms of designer feed-
back, such as sketches and revisions, were highly effective in
improving open-source models. Our best-performing model
outperformed all tested baselines, including a larger propri-
etary model, GPT-5.

2 Related Work

To contextualize our work, we review literature in i) UI generation,
ii) annotation interfaces for collecting human feedback, and iii) and
tools to support designer workflows.

Wu. et al.

2.1 UI Generation

There have been numerous approaches developed to dynamically
generate UL Model-based user interface development (MBUI) is a
development approach for user interface applications, where devel-
opers first describe desired Uls in abstract specifications [31, 40],
which an MBUI environment then uses to generate concrete code
implementations. Mobi-D [32] is an example of a MBUI system that
separated Ul development into different models corresponding to
application data, user interactions, and presentation strategy. The
Personal Universal Controller is another example that was devel-
oped to generate personalized interfaces for different appliances,
using a unified remote control device [26].

Artificial intelligence (AI) approaches have also been used to
make dynamic, data-driven decisions on how this model to imple-
mentation should occur. SUPPLE is a toolkit developed to dynam-
ically personalize Uls based on a set of constraints and objective
functions that represent device affordances [11, 12], user prefer-
ences [13], and user ability [14]. More recently, machine learning ap-
proaches, especially those using data driven neural networks, have
been applied to code generation. These large models [1, 24, 34] are
promising in that they are trained on large amounts of data, which
allows them to learn the distribution of text and code. Several works
have finetuned LLMs for layout and Ul-related tasks [35, 39, 47, 51],
often using custom datasets. UICoder is an LLM that generates
SwiftUI code using automated tools such as code compilers and
vision-language models as training signals [47]. While this training
approach was effective at increasing the syntactic understanding of
LLMs, improvement was more difficult for design-related aspects,
and the authors showed that models still made numerous design-
related errors. Overall, data-driven approaches to Ul generation
would benefit from greater volumes of human feedback, specifically
from domain experts such as designers.

2.2 Interfaces for Collecting Human Feedback

One way that machine learning models have improved over time is
by using human expertise to provide labeled data for training. Both
domain experts and non-experts have used annotation interfaces to
provide labels for model training. A body of work studies the design
of annotation interfaces for humans to provide their knowledge
to models. For example, the Teachable Machine is a system where
people interactively provide a small number of demonstrations to
train a machine learning model [6].

Researchers have designed some of these interfaces to maximize
the speed in which people can provide labels and enable them to
collaborate to solve tasks [23]. Other work has designed interfaces
to make annotation more enjoyable, such as Games with a Purpose
(GWAP), which let humans collaborate to solve real-world, compu-
tationally difficult tasks [42]. In contrast to our goal for this paper,
most of these works are not targeted towards enabling experts to
provide feedback through their existing workflows.

More recently, research has introduced interfaces to allow people
to provide feedback to LLMs, which are unique in their breadth
of supported tasks and expressive output space. Some of these
interfaces allow people to rank LLMs output which is later used
for training and evaluation. The LMSYS arena is an interface for
crowdsourcing LLM evaluation by having people provide pairwise

Improving Ul Generation Models from Designer Feedback

evaluations [8]. The LMSYS arena has several variations for peo-
ple to provide feedback for specific applications like design, code
generation, and multi-modal conversations. Beyond arena-style
interfaces, other work has investigated collecting richer types of
human feedback beyond binary signals such as natural language ex-
planation, demonstrations [36], and sequential design revisions [48].
Natural language feedback is generalizable and easy to author, but it
may not be the most efficient or informative for some domains with
visual components like UI design. Thus, we investigate alternative
interfaces for collecting designers’ feedback on UI designs going
beyond natural language annotations to visually grounded annota-
tions and revisions. We also investigate methods that would enable
designers to provide UI design feedback through their everyday
activities in contrast to work that targets collecting annotations
and feedback through a separate tool.

2.3 Tools for Designers

Since our work focuses on types of natural feedback that can be
captured from designers’ workflows, we review computational tools
built to support designers’ workflows. In the book, Sketching User
Experiences, Buxton highlights the need for tools that facilitate
iterative Ul design and development [5]. Several lines of research
have focused on building tools that process low-fidelity designer
artifacts, such as sketches and mockups, and transform them into
higher-fidelity Uls with code implementations [3, 17, 22]. For ex-
ample, SILK was a system that translated hand-drawn sketches of
Uls into interactive, testable prototypes using gesture-recognition
software [21]. Swire uses a neural network encoder to retrieve
relevant high-fidelity examples from a UI database for design in-
spiration [17]. This body of work suggests that artifacts already
produced by designers (e.g., sketches) can encode information valu-
able for producing high-quality Uls.

Other research investigates how designers critique and revise Uls
and provides tools to support this process. d.note helped designers
revise Uls through change tracking, annotations, and supporting
design revisions [15]. Compared to traditional workflows involv-
ing sketching on static images, d.note allowed designers to more
efficiently implement suggested changes with fewer clarifications.
Charrette supported designers in giving feedback during design
reviews and meetings [28]. Charrette classified the types of annota-
tions that occur on artboards, digital canvases used by designers
to create, edit, and present designs, and the authors developed a
web-based application that facilitates iteration and discussion of
UI designs. Insights from these tools suggest that in many cases,
designer workflows can be computationally supported and encoded.

3 Background

Our paper focuses on a formulation of UI generation where an LLM
model is provided with a textual prompt (e.g., a natural language
description), and generates a Ul represented as code (e.g., HTML).
Since we aim to improve their Ul design capabilities, we first provide
technical background on i) the data needed to train LLMs and ii)
opportunities for designer input to improve this data.

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

3.1 Data Format

LLMs are typically trained in multiple stages and can incorporate
different types of data in each [30]: i) unsupervised pretraining, ii)
supervised finetuning, and iii) model alignment.

Most of an LLM’s training time is spent during the pretraining
stage, where the model uses an unsupervised objective to learn
the distribution of text and other data from large, unstructured
data, such as web dumps. During the supervised finetuning stage,
the model is trained to replicate a human-authored output given
a distribution of input prompts, which allows the model to follow
instructions rather than simply predicting continuations. Finally,
the model alignment stage, focuses on fine-tuning models so that
they more closely match human preference data. Instead of training
on a single “ground truth” response, as in the previous stage, align-
ment training relies on numerical ratings or rankings of output
candidates, which is more useful for subjective tasks.

Of the two stages of LLM training where it is possible to incorpo-
rate human input, we choose to focus on the model alignment stage,
since designers tend not to directly write code implementations
needed for constructing input/output examples and there might be
numerous possible “ground truth” responses for a single prompt.
Therefore, our paper focuses on collecting paired comparison
data from designers to model their design preferences.

Z)pref ={(cy"y) Yy -y} (1)

Formally, the dataset of design preferences D, consists of

triplets of an input natural language UI description x and two

possible Ul designs y* and y~, where y* (“chosen” sample) is rated
by a designer to be preferred over y~ (“rejected” sample).

3.2 Data Quality

Previous research has shown that, in practice, the quality of data
has a significant impact on model performance [20, 49, 52]. It may
seem straightforward to generate paired comparison data entirely
synthetically. For example, a simple strategy would be to use a
large, strong model (e.g., GPT-5) to generate chosen responses and
a small, weak model (e.g., GPT-1) to generate rejected responses.
However, these “trivial” pairs may be less effective, since during
training, they cannot help the model assess and choose between
outputs with more subtle differences.

Due to designers’ valuable expertise, there have been several
attempts to include them in model training. For example, previous
work [10] collected natural language critiques from designers who
were asked to follow a pre-defined rubric. However, the authors
found that they disagreed with a significant portion of critiques
generated by models trained on this data and even other designers.
Other work [46] employed a similar approach where designers were
asked to follow a high-level rubric and provided binary comparison
ratings of sampled Ul pairs. However, this also led to low inter-rater
reliability and significant amounts of label noise, which negatively
impacted model performance. We hypothesize that a key reason
is a mismatch between the subjective nature of Ul design and the
rigidity of rubric-based rating tasks. When evaluating synthetic
outputs for model alignment, designers often must choose between
two flawed options, each with different strengths and weaknesses.
This process reduces their nuanced expertise to coarse labels and

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

offers little opportunity to propose concrete improvements. Instead,
in this paper, we show that collecting data from designers mod-
els around their existing workflows leads to higher quality
data and better model performance.

4 Collecting Designer Feedback

In this section, we describe the construction of a large dataset of
designer-annotated Uls that we collected using designer-aligned
feedback strategies. We first generate an initial dataset of UI code
and screenshots using a code LLM. Based on common workflows
identified in the literature, we developed four interfaces that allow
designers to critique and revise the code LLM’s output. Finally, we
use these interfaces in a data collection with twenty one designers
at a large technology company to collect annotations of our data.

4.1 Initial Data Generation

We first generated a large UI dataset to provide materials for de-
signers to annotate using on-policy sampling of a base model. At a
high-level, our approach consisted of i) generating a list of textual
descriptions of Uls, ii) using a code LLM to generate UI programs
for the textual descriptions, and iii) rendering the UI programs into
screenshots.

Instead of using existing datasets of Ul descriptions [44], we syn-
thetically generated a list of diverse and detailed descriptions to seed
our UI generation. We prompted an LLM to generate a large list of
approximately 100,000 natural language descriptions. To generate
this list, we first prompted the LLM with a set of manually-authored
example descriptions that described UI functionality, layout, and
content, and then asked the LLM to generate 10 more unique de-
scriptions. We evaluated this prompt using a high temperature
value, which increased the probability of the LLM generating a new
set of descriptions. We merged descriptions from each evaluation
into a global set until the number of descriptions reached our target.

To generate Ul programs corresponding to these prompts, we
used a publicly released code LLM, Qwen2.5-Coder 32B. At the time
we started this project, Qwen2.5-Coder was the strongest publicly
available code LLM that could fit on a single GPU. We sampled a
random description from the list of UI descriptions and prompted
the code LLM to generate a well-designed web page using a limited
set of web libraries (HTML, Tailwind, and Font Awesome). We used
each randomly-selected description to generate 32 different possible
web pages via temperature-based sampling of the LLM.

We rendered each Ul program into a screenshot using an auto-
mated pipeline. First, a HTML parser extracts all referenced images
in the code (i.e., tags). To generate plausible placeholder as-
sets for rendering images, we fed each image tag’s alt attribute into
an off-the-shelf text-to-image model called Flux Schnell. The Hug-
gingFace ID for this model is black-forest-labs/FLUX. 1-schnell.
Our code generation prompt contained explicit instructions to in-
clude alt-text for all images; however, if the alt tag was still missing,
we used the src attribute value instead. We developed an automated
script that i) staged each UI’'s HTML code and required assets (e.g.,
library files and image assets) into a server then ii) used a headless
browser to visit the hosted URL and take a screenshot. In addition to
the browser-based screenshot rendering, we developed a program
based on the open-source html2sketch library to convert each

Wu. et al.

web page into an editable Sketch file using the computed positions
and styles from the browser DOM. To further improve this dataset,
we used the UIClip [46] base model to compute the quality scores
of Uls. For the 32 original Uls generated for each description, we
kept the top 8 outputs according to their computed quality score.
This allowed many “obviously bad” outputs to be filtered out auto-
matically, which allows designers to give more subtle feedback on
plausible screens.

To summarize, we generated a dataset of ~6400 Uls corresponding
to ~200 unique textual descriptions. Each UI contains a natural
language description, HTML source code, a screenshot rendered
by a browser engine, and a Sketch file.

4.2 Data from Designer Feedback

To collect feedback from designers on the generated Uls, we de-
signed four annotation interfaces inspired by the design principles
identified by Hartmann et al. [15] (Figure 2). Hartmann et al. con-
ducted a broad literature review of how designers revise artifacts
in textual documents, source code, movies, games, and user inter-
faces. Based on their review of these domains, they proposed four
principles important for Ul revision, of which three correspond
to actions by designers themselves: i) commenting, ii) sketching,
and iii) revising. We developed annotation interfaces for i-iii, and
included a baseline ranking interface inspired by current practices
for incorporating user feedback into LLMs through pairwise com-
parisons.

4.2.1 Ranking. We designed the baseline ranking interface to mimic
strategies used by LLM chat interfaces to elicit user feedback, e.g.,
asking users to select the better of two generated responses. Some
other common interactions used to collect rankings include "thumbs
up" or "thumbs down" controls, and implicitly ranking responses
through user-initiated response regenerations (e.g., user is not sat-
isfied with the first response). Our ranking interface displays a
textual description and two candidate Uls arranged side-by-side.
The interface (Figure 2 Far Left) asks designers to select the UI that
they feel is better-designed. If both Uls are poorly designed (e.g.,
both contain many design flaws), the interface asks designers to
choose the UI that they feel is a better starting point for fixing.

4.2.2 Commenting. Multiple studies suggest that designers often
write high-level comments as critiques, propose changes, or “todo
items.” [15, 28] While designers use a wide variety of tools (e.g.,
text editors, note-taking software), for the purposes of our experi-
ment, we developed a commenting interface that allows designers
to provide natural language feedback on Uls. The interface (Figure 2
Center Left) presents designers with a UI screenshot and its textual
description, and asks them to write a list of natural language cri-
tiques. Designers type each critique or suggestion into a text-field
then hit the Enter key to add it to a list.

4.2.3 Sketching. The sketching interface (Figure 2 Center Right) is
similar to the commenting interface; however, the sketching inter-
face allows designers to provide visually grounded feedback (e.g.,
annotations). The interface presents designers with a UI screen-
shot and asks them to identify areas for improvement within a
screenshot. The interface allows drawing bounding box and point
annotations on top of the UL After drawing an annotation, the

Improving Ul Generation Models from Designer Feedback

Ranking Interface Commenting Interface

Screen
-

Text Field for

Buttons to pick prferred screen Comments List of Provided Comments

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

Sketching Interface Revising Interface

PR tngand ——F [The profile page of a professional networking Screen _Screen e WY
customizing dighal arwerk na ustraton | PTOMPE riermamans ot Pt 40—~ prompt »| Prompt
o
S @=-= Region and || Drag to Select
P8 1 = Number Region Formatting

Options

UI Components

Comments Associate to Regions Manually Editable Screenshot

Figure 2: Figure shows the four interfaces we developed to collect feedback from designers. The ranking interface (Far Left) allows
users to select the better of two Ul screenshots through a binary response. The commenting interface (Center Left) allows users to write a
list of natural language critiques or comments for a UI screenshot. The sketch interface (Center Right) allows users to draw annotations
(boxes and points) on a Ul screenshot and associate them with textual comments. Designers used the Sketch design software (Far Right) to
make direct edits to model-generated Uls, which were first converted into the appropriate format. The commenting, sketching, and revising
interfaces and inspired by interactions identified by Hartmann et al [15].

interface asks the designer to provide a natural language feedback
for that region. Designers can draw multiple annotations on the UI
screenshot which it displays as a list on the interface.

4.2.4 Revising. In addition to providing critiques or feedback, de-
signers often use direct manipulation to revise UI designs in soft-
ware such as Figma and Sketch. Previous work suggests that in
many cases, designers may prefer this revision to occur in the out-
put domain (e.g., rendered graphics) rather than the source domain
(e.g., source code) [15].

We developed an interface that allows designers to revise LLM-
generated Uls using Sketch (Figure 2 Far Right). The interface first
displays a UT’s description and screenshot to allow designers to
think about possible flaws and potential fixes. The interface asks
designers to download the corresponding Sketch file, which we
generated from our initial data generation process. Designers mod-
ified the Sketch file to improve the UI, and then uploaded it back to
the interface.

4.3 Designer Feedback Study

To obtain examples of designer feedback, we recruited twenty one
designers at our institution, a large technology company.

4.3.1 Participants. We recruited participants by posting messages
in company message boards and through word-of-mouth. The re-
cruited participants had varying levels of professional design expe-
rience, ranging from 2 to over 30 years. Participants also worked in
different areas of design, such as UI/UX design, product design, and
service design. Participating designers also noted the frequency
of conducting design reviews (both formal and informal) in job
activities: ranging from once every few months to multiple times a
week.

4.3.2 Procedure. During the study, participants joined a video call
where a member of the research team first gave an overview of
the study and asked for their informed consent. Participants used
each of the four feedback interfaces in randomized order, where
they first watched a pre-recorded tutorial video (1-2 minutes) for
each feedback interface then spent 10.5 minutes giving feedback

to Uls using that feedback interface. In total, the session lasted
approximately one hour. As a thank-you for participating in our
study, we offered participants a meal voucher.

4.3.3 Post-study Interview. Since the primary goal of this work is to
develop designer-aligned interactions for providing feedback to ML
models, we first validate interactions a set of designer interactions
identified by pervious work [15]

In our post-study interview, we asked participants to estimate the
amount of time that they spent doing similar tasks. Overall, partici-
pants estimated that they spent the most time on revision-like tasks
(average of 33%), and participants estimated they spent the least
time on ranking-like tasks (9%). Commenting (26%) and sketching
(26%) also constituted a significant amount of participants’ design
activities, validating that our chosen interaction strategies are rep-
resentative of the types of tasks that designers normally do. Since
designers in our study report doing other types of activities in their
jobs, these percentages do not add up to 100. Most participants
who were primarily UI/UX designers felt that editing and revising
designs (e.g., direct manipulation in design editing software), took
a significant amount of their time, and sometimes referred to these
activities as “hands-on design work”

4.3.4 Dataset Overview. In total, we collected 1460 annotations
from twenty one designers, where one “annotation” refers to a
single Ul screenshot paired with all the feedback for that screen, e.g.,
multiple comments. Designers collected the most annotations using
the ranking interface (1063), and designers, on average, were able
to generate 4.8 rankings per minute. Designers collected the least
annotations using the revision interface (64), on average requiring
3.45 minutes per revision. We expected this discrepancy in samples,
since this condition required participants to attempt to fix Uls rather
than just evaluate them.

The sketching interface (181) led to more annotations than the
commenting interface (152). We hypothesize this is because the
commenting interface required designers to type longer text (87.1
characters on average) than the sketching interface (42.2 characters
on average), since the designers needed to textually describe UI

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

elements instead of being able to annotate the element directly
on the image. Furthermore, the sketching interface generally led
to more feedback (e.g., number of comments) per UI (2.7 on aver-
age) than the commenting interface (1.9 on average). Examining
the annotations and comments, we found that comments from the
sketching interface typically contained lower-level feedback about
particular regions (e.g., “make this text larger”) while the comment-
ing interface typically contained higher-level feedback (e.g., “the
screen has poor information hierarchy”).

The annotation interface designers used strongly impacted
the number of data samples that could be collected in a
fixed duration. On average, designers collected over 15x
more annotations using the ranking interface than the
revision interface.

4.3.5 Ul Preference Pair Generation. We used several strategies to
convert each type of designer feedback into usable preference data
for model training (i.e., UI preference pairs).

e Ranking. As a baseline, we use designers’ rankings to form
preference pairs out of the Ul screenshots.

o Commenting. Designers produced a list of natural language
comments corresponding to a Ul screenshot. For each screen-
shot, we prompt an LLM to improve the UI's HTML code
using the list of provided comments. We then re-rendered the
code into a new screenshot, which we labeled as preferred
over the original Ul screenshot.

o Sketching. Designers produced a list of visually-grounded
annotations corresponding to a UI screenshot. We adopted a
similar approach to processing commenting data, however
we associated each textual comment with an HTML code
snippet of the DOM element with the highest overlapping
ToU score with the drawn box.

e Revising. Designers downloaded a Sketch file generated
from the code used to render a Ul screenshot then modi-
fied and re-uploaded an improved Sketch file. We formed a
preference pair using the rendered preview of the improved
Sketch file as the preferred sample and a rendered preview
of the original Sketch file as the alternative.

4.3.6 Ul Preference Pair Quality Assessment. We conducted a qual-
ity assessment with six members of the research team (who are HCI
experts) to estimate the quality of UI preference pairs generated
from each condition of the designer feedback study. Since there is
no standardized rubric or rating system to evaluate the quality of
UI preference pairs, we operationalize quality as the percent agree-
ment between the researchers’ choice of the best screen in each UI
preference pair, and the “improved” UI from the UI preference pairs
generated from designer feedback.

In other words, if both an HCI expert and a design professional
independently agree on the best screen for a Ul preference pair,
that UI preference pair ranking is more likely to be accurate.

During this study, we sampled UI preference pairs from the
designer-generated dataset, and stratified them by the feedback in-
terface used to collect them. In a web interface, we showed example
pairs to a researcher, who did not have knowledge of i) the type of

Wu. et al.

feedback used to generate the pair and ii) which screenshot in the
pair was “preferred” by the designer. The interface told researchers
to choose the Ul from each pair that they felt was better designed,
and we measured the rate at which the researchers’ choice of the
best screen corresponded to either i) the UI preferred by designers
during the ranking task, ii) the improved UI from the designer’s
edits during the revision task, or iii) the improved UI generated
by running an LLM on the designer’s comments or sketch annota-
tions from the commenting and sketching task, respectively. Each
researcher spent around 30 minutes on this task, which led to 695
ratings in total.

4.3.7 Results. Overall, researchers agreed with designers for 61.7%
of the UI preference pairs. Of the four feedback conditions, re-
searchers most often agreed with the designer on the best screen
from pairs generated from the revision condition (76.1%), which
suggests that allowing designers more control reduces label noise.
On the other hand, researchers and designers had very low agree-
ment on the best screen (49.2%, close to random chance) from
pairs generated from the ranking condition. The low agreement
for ranking-style data is consistent with prior work that compared
designer pairwise rankings and also found low agreement among
independent designers [46]. Compared to prior work, we expected
lower agreements from our ranking experiment because the pairs
used were already pre-filtered to reduce “easy” comparisons with
obvious design flaws (Section 4.1).

In general, designers and researchers had higher agreement on
their choice of the best screen from preference pairs generated
from the comment and sketch conditions, likely because they pro-
vided opportunity for designers to give specific feedback on flaws
and how to fix them. However, the quality of these UI preference
pairs may have been limited by the LLM’s ability to operationalize
some types of high-level designer comments, e.g., “improve the
information hierarchy of this screen”. It is reasonable to expect
that future, stronger LLMs will possess better code editing abili-
ties which would in turn improve the quality of comment-derived
data. Researchers and designers agreed more often on the UI pref-
erence pairs generated from the sketching condition (63.6%) than
the UI preference pairs generated from the commenting condition
(57.3%). We hypothesize this may be because including grounded
annotations for each comment on a UI design enabled the LLM to
better localize the area of the UI the comment applied to, and thus
generate a better fix for it.

Researchers and designers had varied levels of agreement
on Ul preference pairs generated as output from designer
feedback on different annotation interfaces. We use agree-
ment as a proxy for data quality. For our chosen model, Ul
preference pairs generated from designers’ revisions led
to the highest agreement while UI preference pairs gener-
ated from designers’ pairwise rankings led to the lowest
agreement.

5 Learning from Designer Feedback

In this section, we described how we used our collected designer
feedback to fine-tune and evaluate several code generation LLMs.

Improving Ul Generation Models from Designer Feedback

We first describe our model training technique that i) trains a reward
model using preference pairs generated from designer feedback
then ii) uses the reward model to finetune a code generation model.
Using this approach, we trained various code generation models and
evaluated them in two arena-style human evaluations [8]. We first
trained four generator models using each type of designer feedback
collected in our study. We found that both sketching and revision
feedback led to model improvements, and sketch-based feedback
performed the best overall. Finally, we used our sketch-based re-
ward model to finetune two more publicly available code genera-
tion LLMs. In all tested cases, incorporating designer sketch data
improved model performance and our best model outperformed
GPT-5, a proprietary reasoning model from OpenAlL

5.1 Training Approach

To fine-tune code generation models, we adopt a preference-based
alignment strategy described in Section 3. Our training set up is
similar to existing RLHF architectures [30] that involves training
two models: i) a reward model and ii) a generator model.

Our setup uses a two-step process: we first train the reward
model using human feedback, then we use this reward model as a
training signal for training the generator. Previous work [30] found
that this two-step approaches provides advantages over directly
using human feedback to train the generator, such as improved
sample efficiency. Reward models are typically trained to assign a
numerical score to an input/output pair from the generator (e.g., the
concatenation of a textual prompt and response). The reward model
is trained to assign higher scores to “preferred” responses marked
by human labels over ones that are not. After training, the reward
model is used to guide the generator model to produce outputs
that maximize its score, either through traditional reinforcement
learning or data generation. More details can be found in other
papers [20, 30].

5.1.1 Reward Model. We chose to base our reward model off the
multi-modal CLIP B/32 architecture, which we initialized from the
publicly released UIClip model [46] to improve training efficiency.
To isolate the effectiveness of our training data, we used the UIClip
checkpoint which was not trained with any human preference pairs
from their original paper. The HuggingFace ID of our initialization

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

respectively. These scores are computed by computing a scaled dot
product between the encoded textual description and UI screen-
shots. m refers to an empirically determined margin value.

When finetuning, we freeze all but the last layer to prevent over-
fitting and employed an additional data augmentation technique.
Because we only asked designers to give feedback on the top 8 out
of 32 outputs (Section 4.1), it caused our dataset to exclude many
examples of poor Uls, which are nevertheless needed to accurately
represent the entire distribution of generated Uls. To resolve this
imbalance, sampled additional UI pairs from the entire output distri-
bution (i.e., from all 32 candidate outputs) and synthetically labeled
them using UIClip’s score. The reward model was trained using
both designer-labeled preference pairs and these UIClip-labeled
pairs, which were sampled with a fixed probability.

All reward models using the same hyperparameters and for a
fixed number of optimization steps. We determined the hyperpa-
rameters for the reward model training by manual inspection and
experimentation, and we provide them in the appendix of this paper.

5.1.2 Generator Model. We finetuned generator models to gener-
ate outputs that maximized the expected reward using an optimiza-
tion algorithm called ORPO [16]. The ORPO algorithm expects a
dataset of triplets consisting of an input prompt (textual descrip-
tion) and two candidate outputs (HTML programs), where one
of them is preferred over the other. Note that this is similar to
the format of our design preference dataset (Equation 1); however,
ORPO’s training data requires the output candidates to be code (e.g.,
HTML), not the UI images collected from designers. To produce
the required data, we first use the generator model to synthesize
a large batch of UI programs (HTML) from a list of descriptions,
sampling multiple candidates (32) per description. In total, we gen-
erated ~400,000 HTML Uls from ~11,600 randomly sampled unique
textual descriptions. Following this code generation, these HTML
programs are assigned numerical scores by first rendering them
into screenshots then running the reward model over them. With
this dataset of scored HTML programs, we followed a procedure
from previous work [41] to generate preference pairs by using the
top response for an input description as the “chosen” response and
a randomly selected HTML program from the same description as
the “rejected” response. Finally, we ran the ORPO algorithm [16]

checkpointis biglab/uiclip_jitteredwebsites-2-224-paraphrasedfor one epoch to learn on preference pairs labeled by the reward

The reward model accepts i) a rendered image (a UI screenshot)
and ii) a natural language description (a target description of the
Ul). These two inputs are fed into the model to produce a numeri-
cal score (reward), which is calibrated so that better-quality visual
designs result in larger scores. To assign rewards to HTML code,
we used the automated rendering pipeline described in Section 4.1
to first render code into screenshots using browser automation
software.

To train the reward models using our designer feedback dataset,
we used a margin-based variation of the original pairwise con-
trastive objective in UIClip, which tunes the model so that it assigns
higher scores to “preferred” samples over “rejected” samples.

L(s*,s7) = max {0, st —s" + m} 2)

In our loss function (Equation 2), s* and s~ refer to the reward
model scores of the preferred and non-preferred Ul screenshots,

model. When finetuning, we employed parameter offloading [33]
and mixed-precision training to improve efficiency.

All hyperparameters for the generator model training were deter-
mined by manual inspection and experimentation, and we provide
them in the appendix of this paper.

5.2 Feedback Comparison Study

We conducted a study to empirically determine the most effective
source of designer feedback for model training. While our data qual-
ity assessment showed that data collected from designers’ revisions
of Uls led to the highest agreement rate, other forms of feedback
(e.g., sketching), could be collected significantly faster, and the addi-
tional data volume could potentially offset the slightly higher noise
when training models. Using our training approach, we trained
several versions of code generation models from different types of
designer feedback and two baseline conditions.

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

In total, we evaluated 6 conditions:
e Qwen2.5-Coder - The 32B variant of the Qwen2.5-Coder

model, with the Ollama ID qwen2.5-coder: 32b-instruct-fp16.

This was the base generation model that generated Uls that
were shown to designers. This baselines represents model
performance without any additional Ul-specific fine-tuning.

e Qwen2.5-Coder + UIClip - Qwen2.5-Coder trained using the
base model of UIClip [46] as a reward model. This baseline
has undergone additional Ul-specific fine-tuning with an
off-the-shelf reward model trained without any designer
feedback.

e Qwen2.5-Coder + Ranking - Qwen2.5-Coder fine-tuned us-
ing a reward model derived from ranking data.

e Qwen2.5-Coder + Comment - Qwen2.5-Coder fine-tuned
using a reward model derived from comment data.

e Qwen2.5-Coder + Sketch - Qwen2.5-Coder fine-tuned using
a reward model derived from sketch data.

e Qwen2.5-Coder + Revision - Qwen2.5-Coder fine-tuned us-
ing a reward model derived from revision data.

Samples from these models can be found in the Appendix, Section
C.

5.2.1 Procedure. To evaluate the performance of models trained
under different conditions (e.g., types of designer feedback), we
employed an arena-style evaluation with human judges, which
has been used for general [8] and Ul-specific [45, 47] LLM model
evaluation. An arena-style evaluation compares the relative per-
formance of several models by repeatedly sampling a pair of the
pool of models, using both models to generate output for the same
input prompt, then asking a human judge to select a “winner” from
that pair. Following existing practices, we computed rating scores
from judges’ responses. These scores, also referred to as Elo ratings,
are numerical estimations of each model’s performance against
other models in the same arena [8]. We use the same approach and
parameters set by LMSYS Chatbot [8], using their publicly available
code [53]. This approach scales Elo ratings to a standardized range,
centered roughly at 1000, and calculates confidence intervals using
bootstrap sampling.

We generated 210 descriptions for the evaluation, to align the
size of our test set with those used by previous work [46, 47] and
other coding-related benchmarks [7]. The list of descriptions were
generated by prompting an LLM with one-sentence app screen de-
scriptions (methodology described in Section 4.1) and are available
in supplemental material We examined the list of descriptions used
for evaluation to remove duplicates and ensure they do not appear
in any of the training data. Although we did not detect any exact
matches in the remaining data, it is possible that some descriptions
in the two splits are semantically similar, e.g., “a login screen for a
banking app” and “a sign-in page for a financial planner” We con-
sider these types of similarities acceptable, since both login screens
and finance related applications are common types of Uls.

We ran all models in the arena using their default sampling
parameters. We converted models with downloadable weights to
GGUF format, quantized them to 16-bit precision, and loaded them
into Ollama!, an open-source utility for managing and running

!https://ollama.com/

Wu. et al.

LLMs. For efficiency, we limited the maximum output length for all
models to 4096 tokens, which covers the portion of code respon-
sible for rendering the initial screen viewport seen and rated by
annotators. We generated screenshots from the model code output
using the pipeline described in Section 4.1.

5.2.2 Participants. To evaluate models, six members of our re-
search team (who are HCI experts) participated in the model eval-
uation as human judges. We showed judges a randomly selected
textual description and the generated UI screenshot output of two
randomly selected models, and we instructed the judges to select
the UI that they felt had a better design. Note that the evaluation
interface shown to judges does not show which samples were gen-
erated by which models (i.e., a “blind” rating task), reducing the
risk of bias towards any specific condition.

In total, judges conducted 405 pairwise comparisons between
the Ul output screenshots of two models. Since we tested 8 different
models, this led to approximately 27 comparisons for each of the
(g) = 15 possible model comparisons.

Elo Rating Estimates for Models

1050 10%.25
1026.93
1009.35
1000

973.15
{ 974.67

963.23
950

sketch revision uiclip

Rating

qwen2.5-coder comment ranking

Model

Average Win Rate Against All Other Models

0.8

Average Win Rate

sketch revision uiclip qwen2.5-cader comment ranking

Model

Figure 3: Rating scores (Top) and average win rate (Bottom)
of models in our feedback comparison study. We computed the
rating scores by using the LMSYS calculation methodology [8, 53],
and higher scores indicate models that were more often preferred
by human judges. Bars show the median score and 95% confidence
intervals generated using bootstrap sampling.

5.2.3 Results. Figure 3 shows the results of our evaluation, which
shows the rating scores and confidence intervals for each model
using the LMSYS calculation methodology [8, 53].

Overall, our results show that our fine-tuning approach can im-
prove a code generation model’s Ul generation ability. First, even
training with an off-the-shelf reward model trained without de-
signer feedback [46] (i.e., UIClip condition) led to improvements

Improving Ul Generation Models from Designer Feedback

over the un-tuned Qwen2.5-Coder model. Because some pairwise
comparisons were decided on obvious design flaws (e.g., overlap-
ping text), UIClip’s training on synthetically introduced artifacts
helped the generator avoid these errors. We hypothesized that in-
corporating designer feedback would enable the model to better
capture subtle design choices and assess trade-offs. While some
types of designer feedback were effective at further improving
performance, others were not.

Among the tested designer-trained conditions, the sketch and
revision models performed better than the original base model, and
the sketch-trained model performed the best overall. These scores
roughly coincide with our result from our previous data quality
assessment (Section 4.3.6) which showed these types of feedback
resulted in the highest agreement rates between researchers and
designers (63.6% and 76.1% , respectively). We hypothesize that the
sketch-trained model’s higher score over the revision-trained model
stems from the roughly three times larger sketch dataset, which
offset the revision data’s quality advantage. In contrast, training
on commenting or ranking data led to no change or even slight
degradation in performance (Figure 3). We hypothesize that the
noisier labels and lower agreement from these feedback conditions
led to a weak or detrimental signal for model training.

The performance of Ul generation models depends on both
the quality and quantity of data used to train them. While
some interactions require designers to spend more time
and effort, they can also result in better data quality. For
our chosen base model, we found that data collected from
sketching and revision feedback led to model improve-
ments, and training on sketching feedback led to the best
model performance.

5.3 Model Generalization Study

Our feedback comparison study identified effective forms of de-
signer feedback for model training; however, the prior experiment
fine-tuned only the model that produced the designer-annotated
data. Because different base models may generate Ul code with
distinct distributions of design flaws (in both type and frequency),
we now assess whether feedback derived from Qwen2.5-Coder
32B generalizes beyond that source model. Therefore, in this sec-
tion we i) evaluate generalizability by fine-tuning two additional
open-source LLMs and ii) compare their performance against their
untuned baselines and proprietary LLMs (e.g., GPT-5). We selected
Qwen2.5-Coder 3B [18] and Qwen3-Coder [50] to test generaliza-
tion, since they were the best-performing permissively-licensed
coding models capable of running locally on an edge device and
consumer GPU at the time of this experiment, respectively. From
our visual inspection, their outputs qualitatively differ significantly
from Qwen2.5-Coder 32B; however, because both are from the
Qwen family, we acknowledge that this limitation potentially over-
states our method’s generalizability.

To train these base code generation models, we chose to use the
best-performing sketch-trained reward model, which led to the best
performance in our previous experiment. It is possible that other

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

forms of feedback may also be effective or exhibit different general-
ization properties, but we exclude them to prevent a combinatorial
explosion of model variants.

In total, we evaluated the following 6 conditions:

e Qwen2.5-Coder + Sketch - The Qwen2.5-Coder 32B model
fine-tuned using a reward model derived from sketch data.
This model performed the best in the previous feedback
comparison arena, and we include it again as a point of
reference.

e Qwen2.5-Coder 3B - The 3B variant of the Qwen2.5-Coder

model, with the Ollama ID qwen2.5-coder: 3b-instruct-fp16.

e Qwen2.5-Coder 3B + Sketch - The Qwen2.5-Coder 3B model
fine-tuned using a reward model derived from sketch data.

e Qwen3-Coder - The 30B variant of the Qwen3-Coder model,
with the Ollama ID gqwen3-coder: 30b-a3b-fp16.

e Qwen3-Coder + Sketch - The Qwen3-Coder model fine-
tuned using a reward model derived from sketch data.

e GPT-5 - A multi-modal, reasoning-capable foundation model
released by OpenAl [29]. We set reasoning effort to “medium,”
which is the default value in the APL

Samples from these models can be found in the Appendix, Section
C. For this experiment, we used the same evaluation procedure and
participants as the previous feedback comparison study (Section
5.2).

Elo Rating Estimates for Models

1300

124%.54

1200

1100 117].89 udis

ing

1000

Rati

964.36
900

800 50}59

o0 74§.44

qwen3+sketch apts qwen3 qwen2.5+sketch qwen2.5-3b+sketch qwen2.5-3b

Model

Average Win Rate Against All Other Models

o o o
IS N ®

Average Win Rate

o
N

o

awen3-+sketch apts qwen3

awen2.5+sketch _qwen2.5-3b+sketch qwen2.5-3b

Model

Figure 4: Rating scores (Top) and average win rate (Bottom)
of models in our model generalization study. We computed the
rating scores by using the LMSYS calculation methodology [8, 53],
and higher scores indicate models that were more often preferred
by human judges. Bars show the median score and 95% confidence
intervals generated using bootstrap sampling.

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

5.3.1 Results. Figure 4 shows the results of our evaluation. Among
the tested models, Qwen3-Coder finetuned with our sketch reward
model performed the best, while the base Qwen2.5-Coder 3B model
performed the worst. The additional base models included in this
experiment performed roughly as we expected, where Qwen2.5-
Coder 3B performed worse than its 32B counterpart and the newer
Qwen3-Coder performed better. Although the base Qwen3-Coder
has roughly the same number of parameters (30B), it significantly
outperformed the best-performing model from the feedback study,
Qwen2.5-Coder + Sketch. The Qwen3 technical report documents
a wide range of improvements to model architecture, training data,
and training techniques [50]. For example, one improvement is
that Qwen3 models were trained on roughly double (36 trillion to-
kens [50]) the amount of overall data as Qwen2.5 models (18 trillion
tokens [18]). This observation suggests that strategies for improv-
ing the general performance of LLMs can also lead to improvements
in specific domains, like UI generation.

Nevertheless, we showed that our reward model trained with
only 181 feedback samples consistently improved all tested base
models. Notably, the best-performing Qwen3-Coder + Sketch model
generated Ul designs that were preferred over those from GPT-5, a
proprietary LLM which has been estimated to be several orders of
magnitude larger [2]. This suggests that design expertise and spe-
cialized fine-tuning can greatly improve the efficiency of learning
UI generation.

Our results show that fine-tuning with our sketch-based re-
ward model consistently led to improvements in UI genera-
tion capabilities for all tested baselines, suggesting general-
izability. We also show that a small amount of high-quality
expert feedback can efficiently enable smaller models to
outperform larger proprietary LLMs in UI generation.

6 Discussion

The results of our experiments show that UI code generation mod-
els can be improved with input from expert designers. However,
the method used to elicit designer feedback and convert it into
machine-learnable data has a significant impact on the resulting
model performance. In this section, we discuss the implications
of our work for data collection methodologies and learning from
designer feedback. We conclude with limitations and avenues for
future work.

6.1 Agreeing to Disagree

One major challenge of our work and other human-centered prob-
lems is handling subjectivity and multiple resolutions of design
problems. Both phenomena can also lead to high variance in re-
sponses, which poses challenges for widely-used ranking feedback
mechanisms.

This is especially true for UI design and design in general. Our
experimental results validate this in multiple ways. First, in our Ul
preference pair quality assessment (Section 4.3.6), six researchers
ranked UI preference pairs and had very low levels of agreement
on this ranking with expert designers, similar to findings by prior
work [46]. While the speed of the ranking condition resulted in

Wu. et al.

the largest volume of training data (1063 samples), this was not
enough to offset the low data quality. In our model evaluation study,
fine-tuning an LLM on data generated from the ranking condition
degraded the model’s performance, resulting in the worst outcome
among all evaluated models.

One approach to addressing this problem is to develop more
stringent rubrics to encourage more repeatable evaluation of Ul
screens [4]. However, our work advocates for a different approach:
instead of presenting designers with a decision where disagreement
can result in “noise,” (i.e., ranking Ul screens) our approach can
allow different designers to each give non-conflicting alternatives
(i.e., UI design revisions) that are useful for representing for design
assessment. Suppose there is a Ul screen where an important piece
of information is not highlighted, e.g., a checkout screen whose
information hierarchy makes it difficult to locate the total shopping
cost. Multiple designers might be able to diagnose the same problem
but propose different fixes, e.g., highlighting the important element
with color or moving it to a more isolated area to draw attention.
Whereas a ranking task would force the designer to choose between
two model-generated Ul screens, where the alternative possibly
does not address the problem (or potentially even introduces new
ones), our approach is able to introduce a new data point that
specifically targets the original Ul screen’s flaws. By “agreeing to
disagree,” we train the model to consider multiple solutions for a
problem, instead of a single canonical answer. Anecdotally, informal
conversations with designers revealed that they often generate and
evaluate multiple alternative UI designs so incorporating multiple
UI design revisions into model training aligns better with designer
practice.

Other research in the machine learning literature has also ex-
plored feedback mechanisms outside of standard ranking, for exam-
ple through online imitation learning of human demonstrations [36]
or model alignment based on editing model-generated output [19].
These approaches are motivated by the observation that desir-
able generations often lie outside a base model’s output distribu-
tion [36], while conventional pairwise ranking limits feedback to
in-distribution outputs. This observation is especially relevant for
Ul generation, where excellent designs are often creative and un-
common, making them unlikely to emerge from a model’s typical
outputs.

6.2 Tradeoffs in Collecting Designer Feedback

To capture feedback from expert designers, our paper explored
tradeoffs in collecting and learning from designer feedback.
Model-centric vs Designer-centric Interfaces. An early but
important step is determining the requirements of feedback in-
terfaces. RLHF finetuning approaches (Section 3) require datasets
of ranked preference pairs to calibrate the probability of “good”
and “bad” outputs, which motivates most conventional ranking
interfaces. This model-centric approach to designing feedback in-
terfaces primarily considers the requirements of machine learn-
ing algorithms; however, our work and previous work [46] found
that these feedback interfaces are often ineffective at capturing
designer preference and critiques. An alternative approach that
we advance in this paper is to build interfaces around the existing
practices and workflows of designers [15, 28], which typically focus

Improving Ul Generation Models from Designer Feedback

on improving a single UI screen in a non-comparative setting. This
designer-centric approach for data collection involves converting ar-
tifacts from designers’ day-to-day activities, such as design reviews,
white-boarding, and direct edits, into machine-learnable data. Our
Ul preference pair quality and model evaluation experiments indi-
cate that this approach is effective in some contexts (e.g., sketching
and revision) but not in others (e.g., commenting), suggesting the
need to better understand and balance the goals of designers and
model training.

Quantity vs Quality. Our work investigates the tradeoff be-
tween data quantity and quality for training UI generation models.
Previously, the effectiveness of ML annotation systems (e.g., feed-
back interfaces) has often been measured by the speed at which
they could produce responses from human annotators [23, 42]. For
example, one proposed metric for evaluating annotation interfaces
is the number of training examples that could be collected through
the interaction in a given time-frame [42]. While these measure-
ments may be more reflective of utility for tasks where voting [23]
or other forms of redundant checking [42, 43] is possible, we found
that they were not useful for UI design feedback interfaces. In our
work, we found that while some interactions require more time
and effort to complete (e.g., design revision), they often result in
better data quality. Our approach to evaluating UI designs involved
collecting feedback across multiple UI design feedback interfaces to
train UI generation models and evaluate those models with human
judges. Our results ultimately showed that sketching exhibited the
best performance and balance between data quality and quantity.
Nevertheless, the development of more standardized and easily
calculable heuristics for Ul design evaluation at an earlier stage re-
mains an important direction for future work, especially to inform
the earlier stages of design.

6.3 Limitations & Future Work

In this paper, we show that our data collection and modeling ap-
proach leads to significant improvements to the quality of generated
UI code by learning from designer feedback. We see multiple av-
enues for improvement for our work.

First, our current work provides limited validation of our data col-
lection approach. Our designer feedback study with designers was
relatively short (one hour) and designers evaluated synthetically-
generated Uls, which are typically of lower quality than professional
designs. Our study design was motivated by several practical factors
(e.g., our desire to control study conditions) and data confidentiality
(designers may normally work on proprietary, unreleased designs).
A future study could investigate the use of more realistic training
data consisting of professional designs to build a stronger reward
model and could yield new insights into the real-world feasibility
of the approach.

We see numerous opportunities to collect other types of designer
feedback and developing machine learning approaches to learn
from them. When asked about other types of feedback common
in their work?, designers in our study often referenced numerous
methodologies in the HCI literature, such as usability studies, cog-
nitive walkthroughs, and analyzing user engagement metrics. The

2The question was aimed at understanding different mechanisms for recording feed-
back; however, many participants responded with methodologies of collecting it.

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

techniques we used to collect feedback would likely need to be
adapted to infer complex interactive properties related to usability
and accessibility.

Finally, the machine learning formulation to learn from these
other types of design feedback data would need to be updated as
well to translate these artifacts (e.g., recordings or transcripts) into
machine-learnable datasets. We designed our training setup for a
single-screen evaluation. For example, we employ a visual language
model (i.e., CLIP) as a reward model to score a single image input.
Evaluating higher-level aspects of UX and interaction design would
necessitate a more complex evaluator module that could potentially
crawl and interact with an running version of the application (e.g., a
Ul agent). The generator module must also learn from this feedback
and use it to generate functionality for app navigation and handling
interaction (e.g., a login flow). We expect numerous opportunities
for incorporating design expertise in advancements in LLM model
training and their HCI applications.

7 Conclusion

In this paper, we presented interactions for collecting designer feed-
back based on common workflows, such as commenting, sketching,
and revising. We introduce methods for converting this designer
feedback into machine learnable datasets for Ul assessment and gen-
eration. We conducted a designer feedback study where we asked
twenty one designers to give feedback on a set of synthetically
generated Uls and developed techniques to generate a designer
feedback dataset from them. We analyzed this data to validate the
quality of its labels, showing much higher levels of label agreement
than existing ranking methods for output comparison. To validate
the usefulness of our data, we finetuned UI code generation models
in a RLHF configuration with a reward model trained from different
forms of designer feedback. We conducted an arena-style model
evaluation study comparing the performance of our models and
baselines through repeated blind evaluations of the generated UI
design outputs. Our results showed that feedback data collected
from natural designer interactions led to better model performance
compared to ranking data, which is widely used for model training.
In addition, our best-performing model outperformed all test base-
lines, including a larger proprietary model, highlighting the impact
of a small amount of high-quality expert feedback. Our work sug-
gests applying designer-aligned interaction techniques is beneficial
for training models to generate Uls.

References

[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774
(2023).

Reed Albergotti. 2023. Microsoft pushes the boundaries of small AI models with big
breakthrough. Semafor. https://www.semafor.com/article/11/01/2023/microsoft-
pushes-the-boundaries- of-small-ai-models

Tony Beltramelli. 2018. pix2code: Generating code from a graphical user inter-
face screenshot. In Proceedings of the ACM SIGCHI symposium on engineering
interactive computing systems. 1-6.

[4] Param Biyani, Yasharth Bajpai, Arjun Radhakrishna, Gustavo Soares, and Sumit
Gulwani. 2024. Rubicon: Rubric-based evaluation of domain-specific human
ai conversations. In Proceedings of the 1st ACM International Conference on Al-
Powered Software. 161-169.

Bill Buxton. 2010. Sketching user experiences: getting the design right and the right
design. Morgan kaufmann.

[2

[3

—_
)

https://www.semafor.com/article/11/01/2023/microsoft-pushes-the-boundaries-of-small-ai-models
https://www.semafor.com/article/11/01/2023/microsoft-pushes-the-boundaries-of-small-ai-models

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

[6] Michelle Carney, Barron Webster, Irene Alvarado, Kyle Phillips, Noura Howell,

[7

[10

[11

[12

(13

[14

[15

[16

[18

[19

[20

[21

[22

[23

[

]

]

]

]

]

[24]

[26

[27

Jordan Griffith, Jonas Jongejan, Amit Pitaru, and Alexander Chen. 2020. Teach-
able machine: Approachable Web-based tool for exploring machine learning
classification. In Extended abstracts of the 2020 CHI conference on human factors
in computing systems. 1-8.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
De Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374 (2021).

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos,
Tianle Li, Dacheng Li, Banghua Zhu, Hao Zhang, Michael Jordan, Joseph E
Gonzalez, et al. 2024. Chatbot arena: An open platform for evaluating llms by
human preference. In Forty-first International Conference on Machine Learning.
Peitong Duan, Chin-Yi Cheng, Gang Li, Bjoern Hartmann, and Yang Li. 2024.
UICrit: Enhancing Automated Design Evaluation with a UI Critique Dataset. In
Proceedings of the 37th Annual ACM Symposium on User Interface Software and
Technology. 1-17.

Peitong Duan, Jeremy Warner, Yang Li, and Bjoern Hartmann. 2024. Generating
automatic feedback on ui mockups with large language models. In Proceedings of
the 2024 CHI Conference on Human Factors in Computing Systems. 1-20.
Krzysztof Gajos, David Christianson, Raphael Hoffmann, Tal Shaked, Kiera Hen-
ning, Jing Jing Long, and Daniel S Weld. 2005. Fast and robust interface generation
for ubiquitous applications. In UbiComyp 2005: Ubiquitous Computing: 7th Interna-
tional Conference, UbiComp 2005, Tokyo, Japan, September 11-14, 2005. Proceedings
7. Springer, 37-55.

Krzysztof Gajos and Daniel S Weld. 2004. SUPPLE: automatically generating user
interfaces. In Proceedings of the 9th international conference on Intelligent user
interfaces. 93-100.

Krzysztof Gajos and Daniel S Weld. 2005. Preference elicitation for interface
optimization. In Proceedings of the 18th annual ACM symposium on User interface
software and technology. 173-182.

Krzysztof Z Gajos, Jacob O Wobbrock, and Daniel S Weld. 2008. Improving
the performance of motor-impaired users with automatically-generated, ability-
based interfaces. In Proceedings of the SIGCHI conference on Human Factors in
Computing Systems. 1257-1266.

Bjorn Hartmann, Sean Follmer, Antonio Ricciardi, Timothy Cardenas, and Scott R
Klemmer. 2010. D. note: revising user interfaces through change tracking, an-
notations, and alternatives. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. 493-502.

Jiwoo Hong, Noah Lee, and James Thorne. 2024. Orpo: Monolithic preference
optimization without reference model. arXiv preprint arXiv:2403.07691 (2024).
Forrest Huang, John F Canny, and Jeffrey Nichols. 2019. Swire: Sketch-based user
interface retrieval. In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems. 1-10.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu
Liu, Jiajun Zhang, Bowen Yu, Keming Lu, et al. 2024. Qwen2. 5-coder technical
report. arXiv preprint arXiv:2409.12186 (2024).

Jiaming Ji, Boyuan Chen, Hantao Lou, Donghai Hong, Borong Zhang, Xuehai
Pan, Tianyi Alex Qiu, Juntao Dai, and Yaodong Yang. 2024. Aligner: Efficient
alignment by learning to correct. Advances in Neural Information Processing
Systems 37 (2024), 90853-90890.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish
Ivison, Faeze Brahman, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane
Lyu, et al. 2024. T\" ulu 3: Pushing frontiers in open language model post-training.
arXiv preprint arXiv:2411.15124 (2024).

James A Landay. 1996. SILK: sketching interfaces like krazy. In Conference
companion on Human factors in computing systems. 398-399.

James A Landay and Brad A Myers. 1995. Interactive sketching for the early
stages of user interface design. In Proceedings of the SIGCHI conference on Human
factors in computing systems. 43-50.

Greg Little, Lydia B Chilton, Max Goldman, and Robert C Miller. 2010. Turkit:
human computation algorithms on mechanical turk. In Proceedings of the 23nd
annual ACM symposium on User interface software and technology. 57-66.
Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-
Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,
et al. 2024. Starcoder 2 and the stack v2: The next generation. arXiv preprint
arXiv:2402.19173 (2024).

Kurt Luther, Amy Pavel, Wei Wu, Jari-lee Tolentino, Maneesh Agrawala, Bjorn
Hartmann, and Steven P Dow. 2014. CrowdCrit: crowdsourcing and aggregating
visual design critique. In Proceedings of the companion publication of the 17th ACM
conference on Computer supported cooperative work & social computing. 21-24.
Jeffrey Nichols, Brad A. Myers, Michael Higgins, Joseph Hughes, Thomas K. Har-
ris, Roni Rosenfeld, and Mathilde Pignol. 2002. Generating remote control inter-
faces for complex appliances. In Proceedings of the 15th Annual ACM Symposium
on User Interface Software and Technology (Paris, France) (UIST '02). Association for
Computing Machinery, New York, NY, USA, 161-170. doi:10.1145/571985.572008
Jakob Nielsen and Rolf Molich. 1990. Heuristic evaluation of user interfaces.
In Proceedings of the SIGCHI conference on Human factors in computing systems.

[28

[29

[30

[32

(33]

[34

[36

[37

[38

[45

[46

[47

[48

[49

[50

Wu. et al.

249-256.

Jasper O’Leary, Holger Winneméller, Wilmot Li, Mira Dontcheva, and Morgan
Dixon. 2018. Charrette: Supporting In-Person Discussions around Iterations
in User Interface Design. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems. 1-11.

OpenAl 2025. GPT-5 System Card. Technical Report. OpenAl https://cdn.openai.
com/gpt-5-system-card.pdf

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022.
Training language models to follow instructions with human feedback. Advances
in neural information processing systems 35 (2022), 27730-27744.

Angel Puerta and Jacob Eisenstein. 1998. Towards a general computational
framework for model-based interface development systems. In Proceedings of the
4th international conference on Intelligent user interfaces. 171-178.

Angel R Puerta and David Maulsby. 1997. MOBI-D: a model-based development
environment for user-centered design. In CHI'97 Extended Abstracts on Human
Factors in Computing Systems. 4-5.

Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase,
Shuangyan Yang, Minjia Zhang, Dong Li, and Yuxiong He. 2021. {Zero-offload}:
Democratizing {billion-scale} model training. In 2021 USENIX Annual Technical
Conference (USENIX ATC 21). 551-564.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiao-
qing Ellen Tan, Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. 2023.
Code llama: Open foundation models for code. arXiv preprint arXiv:2308.12950
(2023).

Jaejung Seol, Seojun Kim, and Jaejun Yoo. 2024. PosterLlama: Bridging Design
Ability of Language Model to Content-Aware Layout Generation. In Computer Vi-
sion — ECCV 2024: 18th European Conference, Milan, Italy, September 29-October 4,
2024, Proceedings, Part LXXXII (Milan, Italy). Springer-Verlag, Berlin, Heidelberg,
451-468. doi:10.1007/978-3-031-73007-8_26

Omar Shaikh, Michelle S. Lam, Joey Hejna, Yijia Shao, Hyundong Justin Cho,
Michael S. Bernstein, and Diyi Yang. 2025. Aligning Language Models with
Demonstrated Feedback. In The Thirteenth International Conference on Learning
Representations. https://openreview.net/forum?id=1qGkuxI9UX

Ben Shneiderman, Catherine Plaisant, Maxine S. Cohen, Steven M. Jacobs, Niklas
Elmqyist, and Nicholas Diakopoulos. 2016. Eight Golden Rules of Interface Design
(6 ed.). Pearson, Chapter 3.3.4. https://dl.acm.org/doi/10.5555/3033040

Kihoon Son, DaEun Choi, Tae Soo Kim, and Juho Kim. 2024. Demystifying tacit
knowledge in graphic design: Characteristics, instances, approaches, and guide-
lines. In Proceedings of the 2024 CHI Conference on Human Factors in Computing
Systems. 1-18.

Zecheng Tang, Chenfei Wu, Juntao Li, and Nan Duan. 2024. LayoutNUWA:
Revealing the Hidden Layout Expertise of Large Language Models. In The Twelfth
International Conference on Learning Representations. https://openreview.net/
forum?id=qCUWVTO0Ayy

Hallvard Treetteberg. 2002. Model-based user interface design. (2002).

Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Ra-
sul, Younes Belkada, Shengyi Huang, Leandro Von Werra, Clémentine Fourrier,
Nathan Habib, et al. 2023. Zephyr: Direct distillation of Im alignment. arXiv
preprint arXiv:2310.16944 (2023).

Luis Von Ahn. 2006. Games with a purpose. Computer 39, 6 (2006), 92-94.

Luis Von Ahn, Benjamin Maurer, Colin McMillen, David Abraham, and Manuel
Blum. 2008. recaptcha: Human-based character recognition via web security
measures. Science 321, 5895 (2008), 1465—-1468.

Bryan Wang, Gang Li, Xin Zhou, Zhourong Chen, Tovi Grossman, and Yang
Li. 2021. Screen2words: Automatic mobile UI summarization with multimodal
learning. In The 34th Annual ACM Symposium on User Interface Software and
Technology. 498-510.

WebDev Arena [n. d.]. WebDev Arena: Al Battle to build the best website. https:
//web.Imarena.ai/. Accessed: 2025-04-08.

Jason Wu, Yi-Hao Peng, Xin Yue Amanda Li, Amanda Swearngin,]eﬁrey P
Bigham, and Jeffrey Nichols. 2024. UICLIP: a data-driven model for assessing
user interface design. In Proceedings of the 37th Annual ACM Symposium on User
Interface Software and Technology. 1-16.

Jason Wu, Eldon Schoop, Alan Leung, Titus Barik, Jeffrey P Bigham, and Jeffrey
Nichols. 2024. Uicoder: Finetuning large language models to generate user
interface code through automated feedback. arXiv preprint arXiv:2406.07739
(2024).

Amber Xie, Chin-Yi Cheng, Forrest Huang, and Yang Li. 2024. Leveraging Human
Revisions for Improving Text-to-Layout Models. arXiv preprint arXiv:2405.13026
(2024).

Shusheng Xu, Wei Fu, Jiaxuan Gao, Wenjie Ye, Weilin Liu, Zhiyu Mei, Guangju
Wang, Chao Yu, and Yi Wu. 2024. Is dpo superior to ppo for llm alignment? a
comprehensive study. arXiv preprint arXiv:2404.10719 (2024).

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Gao, Chengen Huang, Chenxu Lv, et al. 2025. Qwen3 technical
report. arXiv preprint arXiv:2505.09388 (2025).

https://doi.org/10.1145/571985.572008
https://cdn.openai.com/gpt-5-system-card.pdf
https://cdn.openai.com/gpt-5-system-card.pdf
https://doi.org/10.1007/978-3-031-73007-8_26
https://openreview.net/forum?id=1qGkuxI9UX
https://dl.acm.org/doi/10.5555/3033040
https://openreview.net/forum?id=qCUWVT0Ayy
https://openreview.net/forum?id=qCUWVT0Ayy
https://web.lmarena.ai/
https://web.lmarena.ai/

Improving Ul Generation Models from Designer Feedback

[51] Ning Yu, Chia-Chih Chen, Zeyuan Chen, Rui Meng, Gang Wu, Paul Josel, Juan Car-
los Niebles, Caiming Xiong, and Ran Xu. 2024. LayoutDETR: Detection Trans-
former Is a Good Multimodal Layout Designer. In Computer Vision — ECCV
2024: 18th European Conference, Milan, Italy, September 29-October 4, 2024, Pro-
ceedings, Part XX (Milan, Italy). Springer-Verlag, Berlin, Heidelberg, 169-187.
d0i:10.1007/978-3-031-72661-3_10

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu,
Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging LLM-as-a-judge with MT-
bench and Chatbot Arena. In Proceedings of the 37th International Conference on
Neural Information Processing Systems (New Orleans, LA, USA) (NIPS °23). Curran
Associates Inc., Red Hook, NY, USA, Article 2020, 29 pages.

Lianmin Zheng, Ying Sheng, Wei-Lin Chiang, Hao Zhang, Joseph E. Gonzalez,
and Ion Stoica. 2023. Chatbot Arena: Benchmarking LLMs in the Wild with Elo
Ratings. https://lmsys.org/blog/2023-05-03-arena/. LMSYS Org Blog; accessed
2025-09-04.

[52

o
&

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

A Model Hyperparameters

We provide all hyperparameters used for our model training exper-
iments in Table 1.

B Model Prompts

We used several prompts in our experiments to train and run large
language models.

We used the the following prompt for generating HTML web
pages from a short natural language description. We also fine-tuned
our model using prompts formatted in this template. This prompt
was determined by trial and error and manual inspection on a small
number of test cases.

provide the complete HTML code for a web page
implemented with only tailwind CSS and font
awesome icons. do not use any templating languages

like jinja. the result should resemble an award-
winning i0S app. include realistic and complete
placeholder data. do not treat this as the
starting point for an app - it should be the
mockup of a final complete UI. remember to include
alt text for all images. do not use javascript.
do not use SVGs. here is a description of the
webpage: <natural language description>

We use several prompts for evaluating screenshots. Our approach
was to compute an augmented text embedding using a mix of
positive and negative prompts.

We use the original prompt format described in UIClip [46] as
the positive prompt.
ui screenshot. well-designed. <natural language
description>

We also computed a negative prompt to represent a poorly de-
signed version of the screen.

ui screenshot. poor design. <natural language
description>

Finally, we computed a second negative prompt to represent
empty or overly simple Uls.

ui screenshot. poor design. empty screen

Text embeddings were computed for each of these prompts and
combined together using the following equation.

V' =Vpos — 0.5+ (0.9 - Vneg + 0.1 - Vempty) (3)
v* refers to the final text embedding used for UIClip score calcu-
lation. vps refers to the positive text embedding. vpeq refers to the
negative text embedding. Vempty refers to the empty text embed-
ding. The weighting between the positive and negative embeddings
were determined by trial and error and manual inspection on a
small number of UI screenshots.
We prompted Qwen2.5-Coder 32B to improve Uls given a list of
designer-authored comments.

i have implemented a website using only html,
tailwind css, and font awesome icons.

" html

https://doi.org/10.1007/978-3-031-72661-3_10
https://lmsys.org/blog/2023-05-03-arena/

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

Wu. et al.

Table 1: Hyperparameters used for our modeling training experiments.

Algorithm Hyperparameters Value

Reward Models max optim steps 100
batch size 32
weight decay 0.2
learning rate le-3
margin le-2

UIClip aug prob 0.5
Generator Models odds ratio weight 1.0
effective batch size 8
context length 4096
learning rate 5e-6

<original UI HTML code>

a designer has wrote some notes and feedback:
"<list of comments>"

incorporate this feedback into the website code.
you must respond with the entire code
implementation. do not use comments that are
placeholders for the original code.

We used a similar prompt to improve Uls given a list of region-
grounded annotations provided by designers.

i have implemented a website using only html,
tailwind css, and font awesome icons.

ST html

<original UI HTML code>

a designer has wrote some notes and feedback for
several regions of the HTML:
"<list of comments paired with HTML snippets>"

incorporate this feedback into the website code.
you must respond with the entire code
implementation. do not use comments that are
placeholders for the original code.

C Example Outputs

We provide some example outputs from our model evaluation ex-
periment in Figure 5.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

Improving Ul Generation Models from Designer Feedback

A digital diary app with encryption, mood tracking, and privacy settings

Digital Diary

20

Tocaya patry

.y nas
Welcome to Your

Digital Diary

M
o S
@ -

Satzinge

uiclip

f/ \\
»

D 1 W e
[~

= P ae—
ot
ranking comment

A sleep tracking app that monitors sleep patterns, quality, and provides personalized insights

Steep Tracker .

vanien

7.5 2% 3
-

gt tiey .
Daap siep

s

qwen

A virtual fitness challenge app that connects users with fitness challenges and rewards for participation.

——
080
LI

—

- 2 W

v Traming

A e
qwen

(=L
Dashboard Overview
o -

e

[

Sleep Quality Over
Time

uiclip

Virtual Fitness:
Challenge

uiclip

e e]

Unlock Your
Sleep Potential

Sleap Insights

ranking comment

Fchatiages

o o
[T e FitChallenges

Popular Challanges

fyer——
. oty e
L+ =0

»--

ranking comment

A social media app for photographers with editing tools, sharing, and community forums.

Editing Tools.

qwen

Sroncons (EEED

Welcome to
PhatoCapture

Featurad Phates

uiclip

John Doe

L it s i e

=
P
- "

ranking comment

'A project management app with task boards, Gantt charts, and team collaboraticn tools.”,

Prspect Dasnboans

120

85

Parding Teaka
35

qwen

Project
Management ¢ T

uiclip

ot Project o
e En Mitagement Spp §
Taak Boaeds
oy
Stz
= ® - =
= 3 - :
Ganet charms
PR
Gt ot
ranking comment

Conference acronym XX, June 03-05, 2018, Woodstock, NY

Oigital Blary oe ey Dighad Diary .
[—
pow—— -]

Eaiting e

sketch revision
SheepTracker o
SlaepTracker ‘s
— . [—
L 7.5 hr -
[— —
f— - [& wew oo |
. [—
P - = —
S ————
= — vine
sketch revision
Frten
Join the Ultimate Virtusl Fitness Challangs
Fitness Challanga!
o oy - g land
P r—
. =
[———
arstas Cratenpes T

[T —

sketch revision

napatens

Editing Toals

revision

Y} erapa as i

Harmgerar
o Dashboard

e mtnss

sketch revision

Figure 5: Figure shows rendered output of six models tested in the feedback comparison study. We rendered model outputs for
five randomly sampled text descriptions from our evaluation set.

Conference acronym °XX, June 03-05, 2018, Woodstock, NY Wu. et al.

A virtual travel companion app with real-time travel updates, local recommendations, and itinerary adjustments

Ll EE—— 1D TaveiCompanion s (@)
Upcaming Trips ——
M - Welcome to Virtual Jahn - D
Travel Campanicn

]
] [er— [P —
Local [——
Recommendations. -
- PR ,r’ - [£ /3. &]
qwen2.5+sketch qwen2.5-3b qwen2.5-3b+sketch qwen3 qwen3+sketch gpt5

A mindfulness and breathwork app that guides you through various breathing exercises for relaxation.

[rs—

Ot 4 & - .
Featured Exercises Gond Moming, Barsk Good Moring es
o DEEP BREATRENING T -
Mndful . ‘ A -
BREATHING vtk St

Y

Find Your Inner
Peace

ey e

° e
F— e~ e =
Broathing Exarcises L - 2 2 £ —
gwen2.5+sketch qwen2.5-3b gwen2.5-3b+sketch gwen3 gwen3+sketch gpts

'A language leaming app with immersive stories, cultural insights, and interactive dialogues.’,

. [o— . I
Unlock the Power of " ‘Good morning.
Immersive Stories, — @
Head Laagunges Cultural Insights, purl
- and Interactive

Dialogues. f—

=B .

Features Learmn
Spanish in Bt o s e
- 1 Manth

smmersive Staries.

=

About Us o—r— a
: =t — —_— Tt
[— _ = o - o o o
gwen2 5+sketch qwen2.5-3b gqwen2.5-3b+sketch gwen3 gwen3+sketch gpts

A time management app that organizes daily tasks, sets priorities, and tracks productivity.

[e .

Good morning, Alex!

B ~— | el bl Ta N
Task Manager — . [eP—— — [
. - p—— p—
. o a |7 |5
e - o
[-]
——— 2 = s
qwen2.5+sketch qwen2.5-3b qwen2.5-3b+sketch qwen3 gwen3+sketch gpts
A dream journal app that helps you record and analyze your dreams with tips for better sleep
R — [Y [—— .
[. . Record Your Dreanss,
Analyze Tham e e a 8 @
24 "
— 7% i
P . ..‘....
- — -
- - ‘ LINL -] e
gwen2.5+sketch qwen2.5-2b qwen2.5-2b+sketch qwen3 gwen3+sketch gpts

Figure 6: Figure shows rendered output of six models tested in the model generalization study. We rendered model outputs for
five randomly sampled text descriptions from our evaluation set.

	Abstract
	1 Introduction
	2 Related Work
	2.1 UI Generation
	2.2 Interfaces for Collecting Human Feedback
	2.3 Tools for Designers

	3 Background
	3.1 Data Format
	3.2 Data Quality

	4 Collecting Designer Feedback
	4.1 Initial Data Generation
	4.2 Data from Designer Feedback
	4.3 Designer Feedback Study

	5 Learning from Designer Feedback
	5.1 Training Approach
	5.2 Feedback Comparison Study
	5.3 Model Generalization Study

	6 Discussion
	6.1 Agreeing to Disagree
	6.2 Tradeoffs in Collecting Designer Feedback
	6.3 Limitations & Future Work

	7 Conclusion
	References
	A Model Hyperparameters
	B Model Prompts
	C Example Outputs

