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Figure 1: FrameKit is a tool for authoring adaptive user interfaces based on a ‘keyframe’ metaphor. In the example above, an
author designs an interface for a recommendation system that adapts the size of UI elements based on the system’s confidence
in a recommendation. The author provides three ‘keyframe’ designs for how the UI should look at different confidence values
(top). The system applies a computational approach (middle) to generate additional variations by interpolating between the
keyframes (bottom).
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ABSTRACT
Adaptive user interfaces (AUIs) can improve user experience by
automatically adapting how information and functionality are pre-
sented in a user interface. However, the dynamic nature and po-
tentially numerous variations of AUIs make them challenging to
author. In this paper, we present a generalized framework for defin-
ing adaptation as interpolations between UIs and introduce a com-
putational approach for intelligently generating new variations of
a UI from a small set of designs. Based on this approach, we de-
velop FrameKit, an authoring tool with a programming-by-example
interface that retains flexibility and control afforded by manual
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authoring while reducing effort through automatic generation. We
demonstrate that FrameKit can support adaptations that typically
require domain-specific toolkits, such as those found in context-
aware applications, responsive UIs, and ability-based adaptation.
We evaluated FrameKit with ten front-end developers, who success-
fully authored AUIs after a short tutorial session and suggested that
FrameKit provides an effective mental model for AUI authoring.
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1 INTRODUCTION
Adaptive user interfaces (AUIs) automatically reconfigure their ap-
pearance and behavior based on context to improve user experience.
Despite their utility, the dynamic nature and potentially numerous
variations of their appearance make AUIs challenging to author. In
some cases, it is possible to manually author individual versions
of an interface for each use-case (e.g., simplified versions of app
launchers [5, 7]), but this strategy quickly becomes costly and time-
consuming as the number of combinations of contextual factors
grows. Instead, various approaches have been proposed for defining
adaptive behavior at a higher level e.g., using objective functions
[18, 22], policies [28], or abstract specifications [26, 27]. Compared
to manual approaches, these techniques reduce effort but distance
designers and developers from the final UI, since the authoring
process becomes more abstract. This makes applying established
workflows such as gradually refining mock-ups more difficult [13].
Existing tools for authoring AUIs are also domain-specific (e.g., an
AR toolkit [22] is not designed for ability-based adaptation and vice
versa), and they are often limited by platform-specific assumptions
(e.g., CSS media queries for screen size). Collectively, this suggests
a need for a more flexible and unified method of authoring AUIs.

To address the above challenges, we present FrameKit — a gen-
eralized authoring tool for 2-D AUIs that supports a novel auto-
mated workflow based on programming-by-example (PBE) and
keyframing. FrameKit enables designers to guide an automated
AUI generation algorithm by directly creating and manipulating
point designs, analogous to “keyframes” used in video editing and
animation. In our workflow, designers create a small set of design
examples using a WYSIWYG interface, specify an arbitrary set of
contextual adaptation parameters (e.g., the user’s available atten-
tion, distance from user to interface, display dimensions, etc.), and
associate their designs with different points in the adaptation space
(i.e., keyframing). The system automatically generates new vari-
ations of the UI at unseen points in the adaptation space (called
frames). The user can inspect and directly adjust the generated
frames and save them as new keyframes, which are fed back into

the system to guide future interface generation. FrameKit’s work-
flow is flexible enough to be applied to a range of applications that
were previously authored using domain-specific toolkits ranging
from simple responsive layouts to complex context-aware XR UIs.

FrameKit is built on a novel computational approach developed
in this work that defines adaption behavior as discrete interpo-
lations between the tree structures of UI keyframes, based on a
customized tree-edit distance metric [56]. First, hierarchical defi-
nitions are extracted from UI designs that describe their content,
widgets, and structure. To generate a new version of the interface
based on a set of context parameters, our algorithm finds relevant
keyframes that have been previously associated with similar con-
texts. Finally, our algorithm “blends” together two of these designs
using a sequence of discrete edit operations (based on tree-edit
distance [56] and heuristics) that produce intermediate versions of
the UI.

To demonstrate FrameKit’s flexibility, we created a diverse set
of example applications that include a responsive UI, ability-based
adaptation, and a UI responsive to spatial context. To demonstrate
FrameKit’s usability, we conducted a user study with 10 front-end
developers where we provided visual prompts (screenshots) and
asked them to recreate examples of AUIs from past HCI literature.
Although the original implementations of the prompts depended on
domain-specific toolkits, all participants could successfully author
the AUIs using FrameKit after only a short tutorial. Participants’
comments suggest that FrameKit could integrate into existing front-
end development workflows, and that the tool enabled an effective
mental model of how to develop AUIs.

In summary, this paper makes the following contributions:
(1) A computational approach for UI adaptation that generates

new variations of UIs from a small set of keyframes through
interpolation.

(2) FrameKit, a mixed-initiative tool for authoring AUIs built on
the above computational approach.

(3) A set of example applications that demonstrate how a wide
range of existing adaptive UI behaviors can be achieved
using a key-framed approach, including those used in ex-
isting contextually-aware applications, responsive UIs, and
systems supporting ability-based adaptation.

2 RELATEDWORK
Our work contributes to AUI research by providing a computational
tool for authoring AUIs through a PBE workflow. To situate our
work, we review related literature from i) adaptive user interfaces,
ii) computational UI design tools, and iii) PBE authoring tools.

2.1 Adaptive User Interfaces
AUIs have been developed with the purpose of adapting to display
parameters [52, 54, 57], user ability [53, 61, 67, 71], context [20, 43],
user preferences [23, 26, 27, 64, 65], and tasks [21, 26].

A range of methods has been employed to define adaptive behav-
ior. One approach is to develop tools and frameworks that contain
pre-programmed logic for common adaptive patterns. For example,
many commercial tools (e.g., Dreamweaver [9], WebFlow [8]) and
frameworks (e.g., Bootstrap [1]) contain ready-made templates for
adapting a website to mobile and tablet form-factors. Previous work
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has developed similar software frameworks to support context-
awareness [20, 43], user behavior [28], and mixed-reality [34] UIs
by providing developers with pre-built, composable modules for
sensing, recognition, and adaptation. Model-based approaches have
also been developed, which provide higher-level abstractions of
widgets and behavioral patterns common in ubiquitous [59] and
multi-device computing applications [47].

Other development approaches have used objective-based opti-
mization to automatically adapt UIs by searching for layouts that
optimize predefined metrics [23, 26, 27, 53, 57]. The ARNAULD [27]
and SUPPLE [26] systems, enable developers to specify a high-level,
formal definition of their UI that is used for dynamic generation.
During runtime, these systems use an optimization algorithm that
makes rendering decisions based on an objective function that cap-
tures user preferences or abilities. Similarly, recent approaches for
the 3D placement of UI widgets inmixed reality applications applied
optimized layouts based on the semantic properties of UIs [16, 44]
and developer-tuned objective functions [22] such as reachability,
visibility, and consistency.

FrameKit is designed to address some of the shortcomings of
these existing AUI approaches. Compared to software toolkits
and frameworks designed around a limited set of transformations,
FrameKit provides a unified, domain-agnostic framework for UI
adaptation. Compared to approaches based on objective optimiza-
tion, FrameKit’s workflow allows designers to retain more control
over the automated generation process by directly creating and
editing UIs instead of manipulating more abstract parameters (e.g.,
objective weights).

2.2 Computational UI Design Tools
Numerous computational techniques, such as layout optimization
and generation, have been integrated into tools that aid in the
design process of complex layouts.

The space of possible UI layouts is very large, so some work
has proposed surfacing relevant design examples to inspire new
designs [29]. Webzeitgeist, for example, collected a large dataset
of webpage layouts and mined the common design patterns used
with different web pages [37]. RICO is a similar dataset collected
from Android apps, and introduced an efficient machine learning
model for finding designs with similar layouts [19]. Improvements
have been made to improve the efficiency of exemplar search [12],
and several tools have been developed that integrate these search
capabilities using example galleries [40] and sketches [30].

An alternative to finding existing UI designs is to generate them.
Numerous systems have applied optimization methods to gener-
ate a set of candidates or surface interesting design alternatives.
Early work on layout design generation and suggestion focused
on recommending graphic designs (e.g., posters) based on detected
content types and a set of pre-defined optimization objectives [55].
Sketchplore was a UI prototyping/sketching tool that integrated
a layout optimizer to provide design suggestions and alternative
designs, which enabled users to quickly and efficiently explore a
range of design alternatives [66]. Similarly, Scout was a system that
enabled users to narrow a search space by specifying UI constraints

for automated design generation [62]. GRIDS applied similar tech-
niques earlier in the design process and supported creativity by
producing a diverse set of starting points [18].

FrameKit builds on work in computational UI design that inte-
grates automated capabilities into authoring tools (e.g., [62, 66]) to
enhance designer workflows, but focuses specifically on creating
a tool for designing AUIs, which often extend beyond the static
UI layouts produced by previous tools. In addition, AUI authoring
necessitates more controllable forms of generation (e.g., for a target
context) rather than diverse generation (e.g., design inspiration),
which led to the design of our interpolation-based approach.

2.3 Authoring UIs via Programming by Example
Authoring AUIs requires one to define the dynamic behaviors that
extend beyond static layout design. Programming by Example (PBE)
[51] and Programming byDemonstration (PBD) [48]make program-
ming UI behaviors easier by learning the desired behavior from a
small set of examples rather than a manually-specified definition
[46].

Macros, or scripts that replay previous demonstrations, can be
effective for simple interface tasks [49] but lack the capacity to gen-
eralize to new scenarios. Pavlov was an early system that applied
PBD to author UI animations using a more generalizable stimulus-
response framework, where temporal or action events (i.e., stimuli)
were associated with graphical transformations and states (i.e., re-
sponses) via demonstration [68, 69]. The association process often
relied onmanually defined heuristics (i.e., rule-based inferencing) to
extract logic from demonstrations or multiple examples [24, 50, 70].
Othermore sophisticated reverse-engineering algorithms have been
developed to infer the constraints [10, 35, 38, 39, 45], behaviors
[25, 42], or definitions [33, 73] of existing UIs. In some cases, these
approaches have been integrated into authoring environments for
responsive adaptation [35] and adaptive AR scenes [60]. Recently,
Large Language Models (LLMs) have shown promising capabili-
ties in generating complex UI code from UI screenshots or simple
sketches of UIs [11], further lowering the barrier to using PBE sys-
tems. While inference and generation techniques have improved,
many of the challenges of PBE systems remain. Since it is unlikely
that any automated system will achieve perfect performance, PBE-
based authoring systems are likely to benefit from user control and
feedback [36, 50].

FrameKit contributes to this body of research by applying PBE
to AUI authoring. FrameKit infers adaptive behaviors from a small
number of manually authored UI examples called keyframes, which
are associated with user-defined adaptation parameters. Most re-
lated to the present research is the Expresso environment, which
used keyframes to infer CSS constraints while users were authoring
responsive websites [35]. FrameKit, however, offers a more general-
ized approach that extends to complex adaptive behaviors through
support porting modularization of adaptive behaviors, interpolating
structurally distinct UIs, and support for multi-dimensional con-
text. Importantly, FrameKit’s automatic inference and generation
abilities are tightly enclosed within a user-feedback loop, allowing
for direct user control during the authoring process.
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E Preview Pane View and test currently edited widget

D Variable Pane  Create properties for currently edited widget

C Property Editor Edit properties of 
selected widget

B Hierarchy Editor Edit layout of 
currently edited widget

A Keyframe Editor Define adaptive behavior

Figure 2: FrameKit’s authoring interface is divided into several regions. The Hierarchy and Property Editors (B & C) are used to
create variations of the UI, which are associated with different parameters in the Keyframe Editor (A). The Preview Pane (E)
is used to test the AUI. The Variable Pane (D) exposes editable values for use when nesting the current widget within other
widgets.

3 FRAMEKIT: AN AUI AUTHORING TOOL
In this section, we introduce the design of FrameKit by first giv-
ing an overview of its authoring interface, and then providing a
walkthrough scenario that illustrates how a designer could use it
to author an AUI.

3.1 Interface Components
FrameKit’s authoring interface was designed to mimic no-code or
low-code GUI builder tools. The interface supports the creation of
widgets that can represent portions or the entirety of a UI. Wid-
gets can be combined to compose complex layouts and adaptive
behaviors. The interface contains a Preview Pane (Figure 2E), which
enables users to interact with, and test, the current widget. Like
many other GUI builder tools, UIs are represented as hierarchical
structures composed of widgets and properties, similar to the DOM
of a webpage.

The Hierarchy Editor pane (Figure 2B) allows users to edit the
current widget by adding new subwidgets or training the layout
structure through drag-and-drop interactions. Some subwidgets
have editable properties (e.g., an image’s source parameter), which
can be viewed and modified in the Property Editor (2C). The Vari-
able Pane (Figure 2D) allows the user to define new editable proper-
ties for the current widget that alter its layout or behavior. Finally,
the Keyframe Editor (Figure 2A) is used to define the current wid-
get’s adaptive behavior. The top of the Keyframe Editor shows a
list of keyframes (i.e., UI states associated with contextual states)
associated with the current UI. Users can load keyframes, delete

them, or toggle features such as UI interpolation. The Keyframe
Editor allows users to define adaptation parameters (e.g., screen
size), each represented by a slider. Users can create a new keyframe
by i) dragging the context sliders to the desired values, ii) editing
the current widget state using the WYSIWYG interface, and then
iii) clicking “Capture Keyframe.” Importantly, FrameKit makes no
assumptions about the types of adaptation parameters that can be
defined (they are not limited to common use cases such as screen
size) making it more versatile for use cases not supported by ex-
isting tools that rely on pre-programmed behaviors or objective
functions.

3.2 Walkthrough
In this walkthrough, we illustrate how a designer could use FrameKit’s
workflow (Figure 5) to author an AUI. Alex is creating a context-
adaptive food app (Figure 4) for a client’s restaurant that adapts its
layout to screen size and the output of an intelligent recommenda-
tion system.

3.2.1 Initial Design. Alex first uses FrameKit’s WYSIWYG editor
to create variations of the UI that correspond to different conditions.
They think that the menu, for example, should present different
layouts based on the screen size of the device and the confidence of
the food recommendation system. To adapt to different screen sizes,
the menu UI should display fewer details when screen real-estate
is scarce (e.g., omitting an image preview or description text). The
menu UI should also adapt to the recommendation system output by
allocating more screen space to food items with higher confidence
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Figure 3: FrameKit automatically generates variations of the
UI based on keyframes associated with adaptation parame-
ters. This figure shows the variations of a widget from the
food menu UI that was generated from manually provided
keyframes (the endpoints) which depend on two parameters.

that the user might want them. Alex creates two widgets based on
their designs: a food item widget that is used to render individual
food items on the menu, and a menu widget that arranges multiple
food items that have been imported as subwidgets.

3.2.2 Defining Adaptation. In order to add the adaptive behavior,
Alex opens the food item widget and registers “screen size” as an
adaptation parameter, which creates a slider to represent its value
(Figure 3).1 The default appearance of the food item widget (where
all of the information is displayed) is appropriate when the screen
size is large. For smaller screens, Alex drags the slider to the mini-
mum value and then simplifies the food item widget by removing
the image preview. Alex applies a similar process to the menu wid-
get, starting by registering a new adaptation parameter called “item
confidence.” The default horizontal layout should be used when the
recommendation engine assigns low or equal confidence values
to all food items in the menu. Alex also creates an alternate menu
layout that emphasizes the item with the highest confidence by dis-
playing it in a separate container and saves a keyframe by dragging
the “item confidence” slider to the maximum value.

3.2.3 Iterative Refinement. Alex can preview the UI’s adaptive
behavior by moving and dragging the sliders corresponding to
adaptation parameters and viewing the generated UI in the preview
pane (Figure 3). Alex can then refine the adaptive behavior of the
app either by directly manipulating the generated output or by
authoring an entirely new UI. Both actions result in a new keyframe
that is incorporated into the system and helps guide it toward better
generations.

1The parameter name (“screen size”) is chosen by the author and can be any arbitrary
string. The system’s adaptations are not hard-coded based on the selected name, but
rather on the keyframes that the author has associated.

4 COMPUTATIONAL APPROACH FOR UI
ADAPTATION

FrameKit introduces a computational approach for adaptation that
defines adaptive behaviors as interpolations between UIs. The input
to our algorithm is a set of UIs (i.e., keyframes) that were previ-
ously associated with adaptation parameters, and a target context
for which the algorithm generates a new variation of the UI. Our
algorithm uses three steps (Figure 6) to generate new UIs from
keyframes: i) input processing, ii) endpoint selection, and iii) UI
blending (i.e., interpolation).

4.1 Algorithm Input
The input to the adaptation algorithm is a set of keyframes, each
consisting of a UI “point design" and corresponding values for adap-
tation parameters. The UI is internally represented as an ordered
tree, where nodes correspond to widgets that are present in the
layout. Nodes can contain attributes corresponding to parameters
(e.g., an image’s size and source URL). Some attributes, such as size,
can be labeled by the user as “blendable,” which allows them to be
adjusted during the interpolation process. Context is represented
by a multi-dimensional vector, where each dimension corresponds
to a different user-defined parameter that affects the UI.

4.2 Endpoint Selection
To generate the UI corresponding to a context, the algorithm finds
a set of relevant examples, called endpoints, that can be “blended"
together to produce the final output. When there is only one adap-
tation parameter (one slider), two keyframes with the closest value
greater than and less than the target value are chosen. When there
are multiple dimensions, finding the smallest enclosing hull for the
target context is computationally expensive, so an approximate
approach is used that sequentially repeats the interpolation process
for each adaptation parameter.

4.3 UI Blending
UI Blending is a feature that allows FrameKit to generate intermedi-
ate versions of the UI by interpolating the structure and attributes
of the selected endpoints. If this feature is disabled, the system
uses a “jump transition" to display an existing design instead of
generating a new one. When blending is enabled, the algorithm
first identifies widget attributes (e.g., widget size) that can be inter-
polated for a smooth transition. For our prototype implementation,
we use simple linear interpolation, but more sophisticated types
of interpolation (e.g., polynomial, spline, tapered) can be used to
create softer transitions.

𝑦 = 𝑦0 + 𝛼 (𝑦1 − 𝑦0) (1)

Equation 1 is used for the standard linear interpolation, where 𝑦0
and𝑦1 are the endpoint values for a parameter and𝑦 is the computed
output. The main idea is first to compute the difference between
the two endpoints and then add a portion of the difference (i.e., the
alpha value) onto one of the endpoints to arrive at a “midpoint.”
To generalize this concept to discrete and structural changes, we
use an implementation of the tree-edit distance (TED) algorithm
[56] to calculate the “difference” between two trees by computing
a sequence of “edit” operations that are needed to transform one
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Figure 4: The adaptivity of the Food Menu app represented in a 2-D space. There are two adaptation parameters, i) screen size
and ii) recommendation confidence, and we show 9 adaptations of the app in this space, although there are more generated
variations that are not shown due to space constraints. As screen size is increased, items are allocated more space and detail. As
recommendation confidence is increased, higher confidence items are emphasized through relative size while low confidence
items are removed. In this example, the UI variations with a star icon were automatically generated as frames, but the user made
small edits, turning them into keyframes. A video is provided in the supplemental material to show the originally generated
frames and user edits.

Design RefinementAdaptation

User provides point 
designs of the UI at  
different contexts

System automatically 
generates new UIs based 
on adaptation variables

User refines output through 
direct manipulation, resulting in 
keyframes that guide the system

Figure 5: FrameKit’s overall workflow. Design phase: authors
specify point designs of the UI associated with adaptation
parameters. Adapt phase: tool generates additional variations
of a UI for unseen contexts. Refine phase: user refines the
generated output or provide additional keyframes to guide
algorithm behavior.

tree to another. A portion of the edit sequence can be reapplied to
one of the endpoints to generate an intermediate tree.

AUIs authored with FrameKit can be nested within one another,
e.g., the user authors widget A, then includes it as a sub-component
of widget B. When multiple adaptive widgets are nested, the adap-
tation parameters of the imported widget can be modified using the

Input Process UI BlendingEndpoint Selection

UI designs are 
represented as 
hierarchical trees

System uses keyframe 
context to determine 
interpolation endpoints

A new variation of the UI

is generated by applying

a sequence of edits

Figure 6: An overview of FrameKit’s computational approach
toUI adaptation. Keyframes containUI designs that are repre-
sented as trees, associated with context variables. The system
finds relevant keyframes (endpoints) based on a target query.
A edit sequence is computed from the endpoints which is
used to generate additional variations.

Property Editor and linked to the adaptation parameters of the par-
ent widget. The layout of the child widget is first computed using
the blending algorithm and inserted into the appropriate place in
the parent’s hierarchy. Our supplemental video shows an example
of this process.

Reordering Heuristics. The sequence generated by the TED algo-
rithm [56] is optimized to achieve the minimum possible number
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of operations. Since the default edit sequence may contain consecu-
tive “delete” operations, simple truncation can result in missing or
misplaced elements. Several heuristics were created to re-order and
augment the default sequence to produce better intermediate out-
puts. Descriptions of these heuristics can be found in the appendix
(Appendix B). At a high level, the heuristics i) re-order the sequence
of insertions and deletions to group together edits that operate on
container items, and ii) optimize the ordering of replacement edits
with respect to other changes.

5 SYSTEM IMPLEMENTATION
FrameKit’s authoring interface was implemented as a React.js web
application that can be accessed through a browser. UI layouts are
represented as JSON structures that are manipulated through inter-
actions with theWYSIWYG editor and saved to local storage. JSONs
are formatted as nested structures of widgets and their parameters,
similar to the HTML DOM or other declarative UI definitions. The
current prototype supports a small number of basic types of widgets
(e.g., text, buttons, images), but this set could easily extended by the
end user or at a toolkit level by updating FrameKit’s JSON to code
compiler. The front-end application uses HTTP requests to commu-
nicate with a Python server that executes the algorithms to adapt
and render UIs (i.e., generating HTML and JavaScript code for the
preview widget). Our current implementation uses a Python server
for tree-edit distance computation with specialized libraries [56],
but future versions could be implemented entirely using client-side
JavaScript.

6 EXAMPLE APPLICATIONS
A key goal of FrameKit was to support the creation of AUIs for a
wide range of different current and potential future applications.
To demonstrate FrameKits’s flexibility, this section describes three
additional example applications (in addition to the recommendation-
based UI described in Section 3.2) based on real-world applications
and research prototypes [26, 52]. We describe: i) a responsive UI, ii)
a UI that adapts to the motor abilities of a user, and iii) a waypoint
UI for an AR application.

6.1 Responsive UI
The Responsive UI example is based on the Mozilla Firefox website,
which was used in previous work [35] and includes several features
that help it adapt to different viewport dimensions. First, the website
includes responsive images whose display sizes are adjusted based
on the width of the screen. The margins between some elements
also shrink to preserve space. The layout generally transitions
smoothly with changes in screen size, however, there are several
distinct layouts that are snapped to at specific “breakpoint” widths.
At each breakpoint, the header menu switches between several
configurations: i) a horizontal menu, ii) a two row menu, and iii)
a vertical menu that is revealed by tapping on a collapsed menu
button.

To implement the Mozilla website in FrameKit, we observed how
the layout changed as it approached the pre-set breakpoints. The
main body of the website had two breakpoints, while the header
menu had three, so these were implemented as separate subwidgets.
The website body used four keyframes, where the first and last

two were blended smoothly, and there was a jump transition (i.e.,
an instant change) between the second and third keyframes. The
header bar was implemented using three keyframes with structural
blending between them. Both the body and header widgets were
imported into a main widget (i.e., nesting) to better coordinate their
transition behavior.

6.2 Ability-Based UI
Adaptive UIs have been employed to accommodate users with mo-
tor or cognitive disabilities. This ability-based UI example is based
on screenshots of SUPPLE [26] that adapted a lighting control panel
for a user with motor impairments. The original interface contained
elements such as sliders that required precise manipulation, so SUP-
PLE generated an alternative version where large, tappable buttons
presented the same functionality. Because the buttons took up more
space, the UI controls were re-organized in a tabbed container to
maintain the same screen footprint.

The control panel contains several repeated elements (e.g., slid-
ers) to control different lights. We identified parts of the UI that
could be modularized into re-usable widgets, and we implemented
widgets for brightness controls, lighting groups, and the main con-
trol panel. The brightness control widget had three states that
traded input resolution for target size: i) a full slider, ii) 10 hori-
zontally aligned buttons that supported the selection of brightness
at increments of 10%, and iii) 5 horizontally aligned buttons that
supported the selection of brightness at increments of 20%. The
lighting group widget, used to organize the brightness controls,
had two states: i) a single page with multiple panes for each light-
ing group, and ii) a tabbed container with a tab for each lighting
group. The subwidgets were imported into the main widget that
coordinated their transition behavior so that the lighting groups
were tabbed containers when the brightness controls contained
horizontal buttons.

Our re-implementation differs from the reference SUPPLE sys-
tem in functionality. While SUPPLE automatically generates UI
variations from the same high-level abstract specification, FrameKit
needs prior knowledge of specific user groups and manual creation
of keyframes for their preferences, like larger buttons for motor-
impaired users. While we acknowledge that FrameKit sacrifices
generative ability for manual control, we could imagine the ap-
proach being effective as a way to refine the output of other tools
like SUPPLE at development time or as a way of exploring designs
during prototyping.

6.3 ARWaypoint Marker
Finally, we present an AR waypoint application based on location
markers in AR and 3D virtual environments. These markers are
anchored to objects of interest in the environment, and provide
more detailed information as the user gets closer to the object. Ad-
ditional information that requires space to render is often occluded
until the user is in close proximity, to avoid information overload
(if there are multiple markers) and to mimic the effect of real-world
visibility constraints.

We used FrameKit to author a waypoint UI for an AR shopping
list app that displays the location of “Bell Peppers” in a grocery
store. The waypoint UI responds to i) the distance between the
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Figure 7: The Responsive (Top), Ability-based (Center), and AR Waypoint (Bottom) examples are represented along their
adaptation parameters. The Responsive UI adapts to larger screen sizes by expanding the header menu and re-positioning the
page content. The Ability-based UI is based on an example use-case of SUPPLE [26], where controls are made easier to tap
while maintaining the same window size through container changes. The AR Waypoint is an example of a UI that shows more
information at closer distances while also using directional indicators that adapt to the item’s location in the user’s field of
view. The second frame of the Responsive UI, the second and third frames of the Ability-based UI, and the second frame of the
ARWaypoint are automatically generated from the user-edited keyframes.

user, and the item and ii) location of the item in the user’s field of
view. Initially, an icon is displayed to represent the item, and as it
becomes closer, the UI increases in size and displays information
about its name and distance. As the angle between the user’s gaze
and the item increases, the size of the directional indicator also
increases. We created two keyframes to represent the waypoint:
i) when the item is far and in center view, and ii) when it is near
but in the periphery. FrameKit applied numerical interpolation to
gradually adjust the size of the image and text elements and struc-
tural interpolation to simplify the UI with distance. Note that the
example UI states shown in Figure 7 are rendered using simulated
sensor values for viewing angle and distance, i.e., it does not include
a real-time tracking implementation.

7 EVALUATION
We conducted a user study with 10 participants to i) determine
whether participants could successfully use FrameKit to author
AUIs, ii) measure perceived usability and usefulness, and iii) collect
subjective feedback. Our goal was to evaluate FrameKit as a unified
approach for AUI authoring, not to show that it could exceed the
individual performance of existing domain-specific approaches for
their target domains.

7.1 Participants
Ten participants with experience in front-end development were
invited to participate in the study (6 male, 3 female, 1 non-binary;
aged 21–41 years, mean age 28). Participants were recruited via
electronic postings and word-of-mouth at a technology company
and a university. Participants had varying front-end experience:
from basic HTML to 4 years as a lead UI designer and different
toolkit preferences (e.g., HTML, React, Unity3D). Seven participants
stated that they had some experience implementing responsive user
interfaces (e.g., personal web pages). Three participants had imple-
mented features that adapted a UI to something other than screen
size (e.g., based on UI content, screen brightness, the detection of a
user, or for accessibility purposes).

7.2 Procedure
A study design similar to those used by previous works [22, 35]
was adopted to evaluate FrameKit. The study lasted 2 hours and
consisted of three phases: i) a tutorial, ii) a usage session, and iii) a
questionnaire. Participants were first provided with an overview of
the study and completed a consent form (15 minutes).
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During the tutorial phase (30 minutes), participants watched a
series of pre-recorded videos that introduced them to FrameKit’s
authoring interface and functionality and walked them through the
process of authoring the Food Menu app. Participants were asked
to replicate the actions they saw in the tutorial videos and ask the
researcher for assistance if needed.

During the usage session (60 minutes), participants were asked to
recreate the Responsive UI and Ability-based UIs (Sections 6.1 and
6.2) based on screenshots of the original interfaces. In the final phase
of the study (15 minutes), participants completed a questionnaire
that collected information about their experience with FrameKit.

The questionnaire consisted of questions about i) demographics,
ii) UI and AUI authoring experience, and iii) questions from the
Technology Acceptance Model (TAM) [17], with additional free-
form fields to gather explanations.

Due to limited time available during the study, simplified ver-
sions of the example applications (section 6) were used as prompts.
Unlike prior work [35], prompts were constructed from screenshots
instead of video because the target applications lacked “ground
truth” transitions between UI states.

7.3 Results
In this section, we present the results of our study, based on i) usage
results, ii) TAM questionnaire ratings, and iii) subjective feedback.

7.3.1 Usage Results. We used application logs from the study to
determine re-creation success and measure usage of features. We
considered a recreation to be successful if it was possible to reach
all the states shown in the original prompt screenshots via some
configuration of slider positions (i.e., adaptation parameters). Based
on this criterion, every participant successfully implemented all the
prompts, and many finished early. One participant (P2) experienced
a bug that affected the UI generation capabilities of the algorithm.
While they completed the prompt recreation task using “jump cuts"
(i.e., disabled blending), it may have impacted their ratings. The
bug was fixed immediately afterward and was not experienced by
any other participants.

We measured number of keyframes participants created during
the usage session (mean = 8.9 keyframes, SD = 3.0). Implementations
of the Ability-Based UI had a larger range of keyframes than the
Responsive UI (Ability: mean = 4.9 keyframes, SD = 2.2; Responsive:
mean = 4 keyframes, SD = 1.25), possibly due to the structural
differences (i.e., changes that required using different widgets rather
than scaling) between the prompt screenshots.

Nine participants constructed complex widgets (that contained
at least one user-authored subwidget), and four used the blending
feature during their prompt re-creation task (others used jump
transitions between manually created frames).

7.3.2 TAMQuestionnaire. The responses to the TAMquestionnaire
showed that participants would likely adopt FrameKit (mean = 5.51
out of 7, SD = 1.44, median = 6) across all of the questions. We
further analyzed the TAM questions corresponding to i) perceived
usefulness, and ii) perceived ease of use score.

Perceived Usefulness. Most participants perceived FrameKit as
useful for authoring AUIs (mean = 5.51, SD = 1.47, median = 6).
Participants attributed this to the WYSIWYG editing interface for

layout creation and the keyframing technique for defining adaptive
behavior. Participants who had less experience with front-end im-
plementation appreciated the ability to easily create UIs without
code, with some commenting that “it would be impossible otherwise”
(P3). Others (P4, P7, P10) also found the keyframing technique to be
useful and noted that the blend function (i.e., interpolation) “would
reduce a lot of work” (P7).

Other participants (P2, P6) felt that a library or code-based frame-
work would have been more useful for the responsive UI task than
FrameKit. However, these domain-specific resources are often not
available for more customized applications (e.g., ability-based adap-
tation).

Perceived Ease of Use. Participants also generally felt that FrameKit
was easy to use (mean = 5.50, SD = 1.41, median = 6). Participants
(P1, P3, P5) felt that the main WYSIWYG editing interface was
intuitive and similar to existing tools, which made it easier to pick
up. For the adaptive functionality, many participants indicated that
there was an initial learning curve (P10) to understand how to use
adapt UIs but made sense of them by relating concepts to those
found in video editing software (e.g., Adobe Premiere) (P4) and
animation software (P10).

Because FrameKit is a research prototype, it doesn’t currently
contain features such as auto-save, undo, or multi-selection, and
some participants (P2, P5, P8) felt that this made the tool harder
to use. However, these features would be straightforward to im-
plement if FrameKit were to be integrated into a more polished
tool.

7.3.3 Subjective Feedback. To gain additional insight into the user
experience of FrameKit and further context on participants’ ratings,
we analyzed subjective feedback provided during the study and in
the free-response fields of the post-study questionnaire.

Understanding AUI Authoring. Perhaps because complex AUIs
(i.e., those that extend beyond responsive designs) are not a com-
mon feature in current applications, we found that many (7/10)
participants did not have prior experience using or authoring them.
We were thus interested in the learnability of FrameKit and asked
participants to give us feedback on their process of understanding
our tool’s workflow and AUI authoring more generally. After the
tutorial and some usage, many participants (8/10) agreed that learn-
ing to operate FrameKit would be easy for them, e.g., “There’s a bit
of a learning curve, but given that adaptive modular interfaces are
complex to conceive and manipulate, it is normal. I would say most
of the complexity comes from the task, not from operating or working
with the interface.” (P10). This was aided by the fact that FrameKit
employs relatable concepts used in other types of creation software.
P4, who was familiar with video editing tools, drew parallels to
video editing tools “[FrameKit’s] close to Premiere and would be easy
for me to use”.

Other participants (P6, P9) noted that there was a “change in
[my] process” (P6) that was needed to use FrameKit, "I had to start
thinking in [an adaptive] way, which I don’t usually do" (P6), and P9
noted that when using existing templates for responsive UIs, they
usually worry about content before supporting screen responsive-
ness. Although P10 suggested the shift was manageable: “I think
after a few complex examples, it would be pretty straightforward
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Using FrameKit would allow me to 
accomplish tasks more quickly.

Using FrameKit would improve my job 
performance.

Using FrameKit in my job would 
increase my productivity.

Using FrameKit in my job would 
enhance my effectiveness on the job.
Using FrameKit in my job would make 

it easier to do my job.

I would find FrameKit useful in my job.

Learning to operate FrameKit would 
be easy for me.

My interaction with FrameKit would be 
clear and understandable.

I would find FrameKit clear and 
understandable.

It would be easy for me to become 
skillful at using FrameKit.

I would find FrameKit easy to use.

I would find it easy to get FrameKit to 
do what I want it to do.

0% 25% 50% 75% 100%

1 - Very Unlikely 2 - Moderately Unlikely 3 - Slightly Unlikely 4 - Neutral 5 - Slightly Likely 6 - Moderately Likely 7 - Very Likely

Figure 8: Responses for each TAM question. Participants found FrameKit useful for creating adaptive UIs, both in terms of
perceived usefulness and ease of use, with most participants agreeing that FrameKit would improve their effectiveness at
authoring AUIs. Across all questions, participant responses suggested that FrameKit could be adopted into their workflows
(mean = 5.51, SD = 1.44, median = 6).

to build the correct mental model on how widgets should best be
constructed to enable adaptive behaviors.”

Feature Adoption. FrameKit contains features for i)modularizing
adaptations (i.e., nesting adaptive widgets) and ii) blending UIs, and
participants’ feedback provided insights into their choice to use or
not use these two capabilities.

Most participants (9/10) modularized their adaptive widgets dur-
ing the usage session and expressed that it was a reliable way of
reducing effort by “using [the] same [widgets] more than one time"
(P8). P7 commented that compared FrameKit to a website builder
(Framer [2]) with which they had experience, the widget abstrac-
tion feature implemented by FrameKit was useful for organizing
pieces of adaptive behavior, “Framer Motions has a function similar
to this application’s Blend function. Though I love the part that the
parent container can influence their children’s parameters.”

Fewer participants (4/10) used the blending feature. While blend-
ing can reduce effort by generating additional UI variations, some
participants (P2, P6) expressed that they preferred manually cre-
ating the desired keyframe rather than refining an automatically
generated one. Some participants expressed that they needed a
deeper understanding of how the algorithm worked before they
would feel comfortable using the blending feature: “I feel like I need
to understand how the blending works and, therefore, the algorithm
behind blending, which is completely abstracted from me” (P6). In
addition, P2 expressed support for the concept of blending but some
concern about being unable to undo if they made a mistake: “The
concept is very intuitive, but during usage, it’s risky to do operations
since there’s no easy undo. If I forget to save the keyframe I need to
restart again” (P2). Overall, the above feedback suggests that more

can be done to communicate how blending works, and to enable
users to experiment with the feature without fear of losing progress.
We believe that adding common editor features such as undo and
auto-save would help enable such experimentation and address
these concerns.

UI Authoring Workflow. A goal of the FrameKit system is to align
more closely with the established workflows of UI designers and
front-end developers, which start from mock-ups and point designs.
We asked our study participants, who had a mix of experience in
both design and front-end development, about their UI authoring
workflows and how FrameKit might fit into them.

Several participants suggested that FrameKit could be a useful
addition during the design phase, where UI designs are rapidly
prototyped. Some (P1, P4, P5) found the WYSIWYG component of
FrameKit to be useful for quickly building UIs that could be later
augmented with adaptive functionality. P7, who worked as a lead
UI designer for 4 years, commented, "I can envision starting with
Figma and using FrameKit to fill in the blank between the mobile
and desktop design. This will save me a lot of work." P10 suggested
that FrameKit’s role could also extend beyond design/prototyping
and be a more effective implementation solution than code “the
keyframing approach ... previews states using a ‘timeline’ metaphor
which is very useful for people who are visual (like I am). I think
I would quickly realize great results with FrameKit, which would
probably take me forever to realize with code" (P10).

Despite the convenience of FrameKit’s graphical interface, some
participants (P1, P2 P6, P9) noted that code might still be needed
or preferred in some scenarios. P1 and P2 envisioned scenarios in
which writing code would give them more flexibility, e.g., “If what
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you want to accomplish is supported with FrameKit, absolutely. But
I think there are [other tasks like animation] FrameKit might not
fully support” (P1). One potential solution would be to implement
FrameKit as a hybrid tool that could be used graphically but also
generate code for additional customization. P9, an experienced
full-stack web developer, made a similar suggestion, "Code is much
more flexible but could take longer to implement ... a hybrid code and
FrameKit tool would be helpful." Overall, we can imagine extending
FrameKit to support additional features to complement existing
tools and workflows.

8 DISCUSSION
Based on the design, implementation, and evaluation of FrameKit,
we discuss ways that FrameKit could contribute to AUI authoring
(i.e., supporting more complex AUIs and a useful mental model)
and areas for further research.

8.1 Flexibility to Support Complex AUI
Applications

Most existing AUIs, such as responsive web pages, apply minor
transformations (primarily layout scaling or “jump transitions" at
breakpoints) between variations, and existing authoring tools focus
on supporting these basic scenarios while providing limited room
for experimentation outside of this scope. Trends in AR and ubiq-
uitous computing suggest that deeper, context-driven interaction
will become more common. Based on this expectation, FrameKit
supports more complex AUIs by providing flexibility in i) defin-
ing UI states, ii) representing contextual factors, and iii) authoring
dynamic adaptation behaviors that depend on both.

First, FrameKit adopts a flexible hierarchical definition of UI lay-
out similar to widely used approaches for web-based (DOM) and
declarative interfaces. FrameKit’s UI representation and additional
features for importing and modularizing complex layouts made it
amenable to WYSIWYG editing (unlike more abstract UI definitions
[26, 58, 59]), which participants in our user study found helpful
for building and refining keyframes. In addition, FrameKit also al-
lows flexibility in defining adaptation context. Many existing tools
[3, 8, 9] focus on a few pre-defined factors (e.g., screen width) and
behaviors (e.g., motion libraries [2]), while leaving more customized
use cases to manual scripting. In contrast, FrameKit allows authors
to use arbitrary names or an arbitrary number of parameters to
describe any contextual factors. Our Adaptive Food Menu exam-
ple, an AUI that relies on multiple sources of context to determine
optimal presentation, shows how complex behavior can be easily
conceptualized in an author-defined adaptation space (Figure 1).
Finally, FrameKit’s adaptation process is based on interpolations of
UIs, which has benefits in controllability and generation ability. Any
variation of the UI is dependent on a small number of “endpoints”
(i.e., a subset of all provided keyframes), unlike the global effects of
adjusting weights on an objective function [44]. FrameKit also sup-
ports interpolating between dramatically different inputs (unlike
previous approaches that only interpolated numeric attributes [35]),
which can reduce the number of manually authored keyframes that
a user would have to provide. Our example applications (Figure 7)
show that outputs generated by the system can be directly used or
refined as new variations of the UI.

8.2 A Mental Model for Authoring AUIs
Aswith any task, the authoring of AUIs can benefit from an effective
mental model that captures their design and implementation. Com-
pared to “traditional” UI authoring, where authors map how data or
interactions can be displayed in a graphical layout, AUIs introduce
new challenges associated with dynamic adaptation. FrameKit’s
approach constitutes a context-based mental model of AUIs, where
variations of the interface are mapped to specific instances of con-
text. However, this is only one of many mental models that could
also be applied to AUI authoring. For example, many UIs are cur-
rently implemented using a rule-based model, where changes in the
UI are mapped to events e.g., when the window becomes smaller
than a certain breakpoint, then switch to a new layout. This is un-
like FrameKit’s model, where the threshold for change is implicitly
computed instead of explicitly set by the user. A rule-based model
is advantageous in that it allows fine-grained control of exactly
when changes occur; however, manually specifying event-based
transitions may become infeasible for larger numbers of variations,
as there 𝑛2 transitions between 𝑛 states. As previously mentioned,
other established alternative models exist for AUI authoring as well,
such as task-based [26, 58, 59] or objective-based [18, 22, 66] models
that abstract the UI adaption and generation process. However,
these models may be more difficult to integrate into existing UI
authoring workflows.

Overall, our user evaluation provides initial support for a context-
based model in that participants could successfully use the tool to
re-create prior examples in the literature and connect its concepts
to other familiar software (P4, P10). However like other mental
models of adaptation, FrameKit makes trade-offs between authoring
effort and control over the end result. Ultimately, by contributing
to the body of approaches for AUI authoring, we hope to lay the
groundwork for a future where designers and front-end developers
have a greater set of tools at their disposal for developing AUIs, and
are thus able to select the tool with the right trade-off for a given
application.

8.3 Limitations and Future Work
Overall, FrameKit presents a promising alternative to existing ap-
proaches for creating AUIs, such as software frameworks [20, 28,
34, 43] and objective-based optimization [23, 26, 27, 53, 57]. The
user evaluation showed that front-end developers were success-
ful while using FrameKit to recreate simplified AUIs after a short
tutorial. With expert use, it is possible to author more advanced
AUIs that have complex behaviors (e.g., our three example applica-
tions). In this section, we discuss the limitations of our work and
opportunities for future research.

UI Representation. FrameKit currently requires users to author
keyframes by manipulating a tree-based representation of their
UI, similar to other graphical GUI builders [4, 6]. While this is
amenable to our layout blending algorithm (i.e., tree-edit distance),
it offers less flexibility than free-form design tools (e.g., Figma
[3]). This representation also introduces some ambiguities while
authoring because the same visual result could be achieved using
different hierarchical structures. Future PBE tools for authoring
AUIs thus need more sophisticated reverse-engineering methods
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[10, 14, 73, 74] to infer structured representations from free-form
designs.

Generation Algorithm. FrameKit currently uses a tree-edit algo-
rithm to generate new UIs by “blending" keyframes. While this
feature generalizes keyframe interpolation [25, 35] to work with
structurally distinct inputs, it has several limitations.

First, the algorithm’s performance depends on a UI’s tree repre-
sentation rather than its visual appearance. For example, inserting
vertical containers into a horizontal stack and inserting horizontal
containers into a vertical stack would both achieve similar visual
layouts (i.e., an evenly-spaced grid) but could lead to different in-
termediate states due to the different sequences of edits needed to
reach other keyframe endpoints. Moreover, edit sequences have in-
herent limitations to the types of transitions they can generate (e.g.,
two edit actions cannot be applied in one step), necessitating addi-
tional manual refinement. Edit sequences also cannot easily be used
for extrapolation, which could be useful for creative exploration
during the authoring process. Finally, our algorithm’s support of
multi-dimensional contexts can be made more robust, as it currently
relies on an approximate algorithm affected by the number and
order of adaptation parameters. We successfully used FrameKit to
author AUIs with up to three adaptation parameters but observed
instability with further complexity. Recently, machine learning
techniques have shown promise in training data-driven models to
map UI layouts to a continuous embedding space [15, 31, 32, 41]
which can be “decoded” back into plausible UIs.

Similarly, LLMs have also shown promising capabilities in un-
derstanding and generating UIs and layouts as code representations
[63], which can be prompted to generate additional UI variations.
Importantly, we view FrameKit’s generalizable keyframing work-
flow of AUI authoring as agnostic to the underlying generation al-
gorithm used and provides an effective framework for feedback and
detailed design with AI-based tools. We anticipate that FrameKit
could be extended to take advantage of newer approaches. For
example, our current tree-edit algorithm could be augmented or
replaced by machine-learning approaches, leading to improved UI
quality and additional feature support (e.g., extrapolation).

User Evaluation. Our user evaluation was a preliminary evalua-
tion of FrameKit in a laboratory setting. There is thus room for a
deeper evaluation of FrameKit. For example, the layout blending
algorithm may not have generated the ideal intermediate layout on
its first iteration, so it would be valuable to understand how many
manual edits are needed for the refinement of a great number of
interfaces. The current evaluation also focused on eliciting usability
feedback from participants, but we did not compare FrameKit to
other baselines for AUI authoring, which are mainly research proto-
types designed for specific application domains (e.g., AR [22, 26, 35]).
Given that complex AUIs that extend beyond responsive designs
have yet to be widely adopted, a fair comparison would require
an introduction and training about a variety of tools and software
libraries to yield insights about the trade-offs of each approach.
Our study also focused on the recreation of simplified examples
that were based on examples found in the research literature, and a
longer study would allow participants to explore more features of
our tool. Notably, due to time constraints, our current study focused
AUIs with single-dimensional context, although our context-aware
menu and AR waypoint example applications demonstrate that

multi-dimensional context is possible. Furthermore, a longer-term
study would enable participants to use FrameKit for creative and
open-ended tasks, where participants could explore usage over time
or apply our tool to their own projects. We are particularly inter-
ested in how tools like FrameKit could become integrated into the
day-to-day workflows of designers and developers. An important
part of this is finding an effective authoring interface that best sur-
faces the generative functionalities of our algorithm. Our current
design (Figure 2) may be further tweaked through our currently
collected feedback (e.g., to mimic the design of animation software)
or subsequent interface evaluations.

9 CONCLUSION
This research introduced FrameKit, a mixed-initiative PBE tool built
on a computational framework for authoring AUIs using keyframes.
FrameKit introduces a novel workflow for authoring AUIs that i)
retains a higher degree of user control over the adaptation process,
and ii) supports many types of adaptation without any domain-
specific tools or assumptions. To demonstrate FrameKit’s flexibility
in supporting a wide range of existing adaptive UI behaviors, we
used it to implement a responsive UI, an ability-based adaptation,
and multiple context-adaptive UIs using keyframes. Finally, an
evaluation study with 10 participants found that participants were
able to develop AUIs after minimal training and suggested that
FrameKit’s authoring process serves as a useful conceptual model
of UI adaptation.
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A PARTICIPANT-AUTHORED EXAMPLES
Figure 9 shows examples of the AUIs resulting from the usage
portion of the study by participants who chose to use the blending
feature, and FrameKit could generate variations (Figure 9B,E) from
other manually authored keyframes.

B HEURISTICS FOR OPTIMIZING EDIT
SEQUENCES

FrameKit generates new variations of a UI by interpolating between
existing examples. The generation process is mainly based on a
backtracking algorithm used to generate edit sequences (composed
of insert, replace, and delete actions on nodes) between two trees
[56]. The original algorithm produces the shortest edit sequence
(i.e., minimizes cost) between the two trees, but this doesn’t re-
sult in the best intermediate output. For example, all sequences
generated by the algorithms are ordered so that all replace actions
come first, followed by delete actions, then insert actions, which
could result in many intermediate states with missing elements.
We briefly describe the heuristics that we used to automatically im-
prove the edit sequence for discrete interpolation. Any remaining
“bugs" or changes in generated frames can be manually fixed by
the author during the refinement step. Note that while our current
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Figure 9: Examples of keyframes from our user study. A) is
a manually created SUPPLE keyframe (P10). B) is an auto-
matically generated SUPPLE keyframe (P10). C) and D) are
manually created Mozilla keyframes (P9). E) is an automati-
cally generated Mozilla keyframe (P9).

implementation uses manually-defined heuristics, this does not
preclude the use of more intelligent algorithms that re-order the
edit sequence using data-driven models. For example, a model of UI
progression could be learned from a dataset of UIs rendered under
different conditions [72] or generated by an LLM prompted with a
small number of examples.

Node Matching. At a high level, the edit-distance backtracking
algorithm proposed by Paassen [56] works by first creating a map-
ping between nodes in the source and target trees. Nodes without
matches indicate insertions and deletions; otherwise, they result
in replacement edits or are used to infer other types of edits. Thus,
the matching function used to map nodes in the source and target
trees can have a significant effect on the edit sequence.

The default algorithm requires that all attributes of two nodes
must exactly match; however, other parts of our algorithm (e.g.,
parameter interpolation) may violate this assumption. We defined
a list of parameters to be ignored by the node matching function:
image dimensions, font size, container-specific parameters (e.g.,
number of columns in a grid), and user-added adaptation parame-
ters.

Container Semantics. If the transition between two keyframes
involves moving elements from one container (e.g., list of items)
to another, we observed that the original edit sequence would first
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delete the original container, insert children nodes, then insert
the final container (parent) node to minimize overall cost. This
results in several intermediate frames where the children nodes are
incorrectly laid out because they aren’t grouped together. There-
fore, we wrote a heuristic to identify inserted container nodes and
corresponding children and reordered them.

For each edit 𝑒 in the original sequence, if 𝑒 is an insert edit,
find list the children of the node corresponding to 𝑒 . For each child
𝑒𝑐 , find the delete action where it is removed from the original
container. Group together corresponding pairs of delete and insert
commands corresponding to each child so that they get executed
simultaneously (no intermediate frame will be missing the element).

Replacement Re-ordering. Transitions between two keyframes
can involve changing the type of widget used to represent a piece of
content. For example, one keyframe may use toggle switches to rep-
resent a set of Boolean options while the other may use checkboxes.
These transitions may result in replace edits. Based observations of
test-cases development examples, we applied alternate orderings
to these edits.

For each edit 𝑒 in the original sequence, if 𝑒 is a replace edit and
corresponds to a node that is inserted into a container, we moved
the 𝑒 to after the container’s insertion. This was done since the new
widget type may only make sense in the new container. We applied
this rule after the container semantics heuristic.
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