
Towards Never-ending Learning of User Interfaces

Jason Wu 1 2 Rebecca Krosnick 3 2 Eldon Schoop 2 Amanda Swearngin 2 Jeffrey P. Bigham 2 Jeffrey Nichols 2

Abstract
Machine learning models have been trained to pre-
dict semantic information about user interfaces
(UIs) to make apps more accessible, easier to test,
and to automate. Currently, most models rely on
datasets of static screenshots that are labeled by
human crowd-workers, a process that is costly
and surprisingly error-prone for certain tasks. For
example, workers labeling whether a UI element
is “tappable” from a screenshot must guess using
visual signifiers, and do not have the benefit of
tapping on the UI element in the running app and
observing the effects. In this paper, we present
the Never-ending UI Learner, an app crawler that
automatically installs real apps from a mobile app
store and crawls them to infer semantic proper-
ties of UIs by interacting with UI elements, dis-
covering new and challenging training examples
to learn from, and continually updating machine
learning models designed to predict these seman-
tics. The Never-ending UI Learner so far has
crawled for more than 5,000 device-hours, per-
forming over half a million actions on 6,000 apps
to train a highly accurate tappability model.

1. Introduction
Machine Learning (ML) has played an increasingly impor-
tant role in the domain of mobile User Interfaces (UIs). Re-
cent techniques have used Deep Neural Networks (DNNs)
to bridge critical usability gaps and enable new types of
evaluations, such as providing missing accessibility meta-
data to UIs (Wu et al., 2021), giving designers feedback to
make UI features more discoverable (Swearngin & Li, 2019;
Schoop et al., 2022b), and predicting user engagement with
animations (Wu et al., 2020). The enabling research artifacts
behind these interactions are large datasets of mobile UI
screenshots annotated by human crowdworkers (Deka et al.,

1HCI Institute, Carnegie Mellon University 2Apple Inc.
3Computer Science and Engineering, University of Michigan. Cor-
respondence to: Jason Wu <jsonwu@cmu.edu>.

AI & HCI Workshop at the 40 th International Conference on
Machine Learning (ICML), Honolulu, Hawaii, USA. PMLR 202,
2023. Copyright 2023 by the author(s).

2017; Kuznetsov et al., 2021). These datasets provide an
invaluable volume of data for training DNNs, but they only
capture a fixed snapshot of the views of mobile applications
and are extremely costly to collect and update. In addition,
relying on crowd-workers to estimate certain properties of
UI elements from static visual signifiers is known to be error-
prone (Schoop et al., 2022b). Inspired by the Never Ending
Learning paradigm (Mitchell et al., 2018), we propose an
automated method for collecting UI element annotations
by interacting with applications directly with an automated
crawler that continuously improves its own performance
and can refresh ML models for other downstream tasks over
time.

We built the Never-ending UI Learner, an app crawler that
formulates UI semantic learning as an active process that
uses real interactions on real devices to explore UIs and dis-
cover properties which are used to continually train machine
learning models. More specifically, our crawler automati-
cally installs real apps from mobile app stores and crawls
them to discover new, challenging training examples to
learn from (e.g., those that result in low model confidence).
During crawling, the Never-ending UI Learner records tem-
poral context (i.e., taking screenshots before, during, and
after interactions) that is used by heuristic functions to gen-
erate more accurate labels than are possible from human-
annotated single screenshots. The resulting data is used
to train models that predict semantics from UIs, such as
element tappability. Although the process can start with
a model trained from human-labeled data, the end-to-end
process does not require any additional human-labeled ex-
amples.

In contrast to existing data pipelines for data-driven UI mod-
eling (Deka et al., 2017; Zhang et al., 2021; Kuznetsov
et al., 2021), our never-ending UI learning paradigm al-
lows data collection, annotation, and model training to be
performed without any human supervision and can be run
indefinitely. Of course, in this paper the learning is not
truly never-ending. Here we present experiments that an-
alyze the performance characteristics of our learner over
5,000 device-hours, in which it performed more than half a
million actions on 6,000 apps. The resulting dataset is an
order of magnitude larger than existing human-annotated UI
datasets (Zhang et al., 2021; Deka et al., 2017) and allowed
us to analyze the performance of UI semantic models when

1



Towards Never-ending Learning of User Interfaces

trained with increasing amounts of recently collected exam-
ples. Ultimately, we believe this model can be used in a true
“never-ending” style, continually crawling the app ecosys-
tem, collecting data from literally all available apps, and
experiencing new UI styles and trends as new or updated
apps are released.

The specific contributions of our paper are as follows:

1. The Never-ending UI Learner, is a system that op-
erationalizes our approach for automatically learning
from UIs through never-ending interaction.

2. An application which demonstrates the use of the
Never-ending UI Learner. We use our crawler to train
a model for predicting “tappability”, a UI semantics
that has been shown by previous work (Schoop et al.,
2022a) to be difficult for human annotators to label.

2. Related Work
Our work in never-ending learning of UIs aims to supple-
ment UI modeling datasets used to model UIs and user
interaction through continual learning. To situate our work,
we review related literature in the i) UI modeling datasets,
ii) computational models of interaction, and iii) approaches
for continual machine learning.

2.1. Datasets for Modeling User Interfaces

Several datasets have been collected for the purposes of ana-
lyzing and modeling mobile UIs. The Rico dataset is a large
dataset of 72,000 mobile UIs and associated metadata in-
cluding view hierarchies, screenshots, and user interactions,
collected from 9,700 publicly available Android apps (Deka
et al., 2017). The FrontMatter dataset uses static analysis
techniques to predict the purpose of UI elements by deter-
mining which system APIs are invoked (Kuznetsov et al.,
2021). Large datasets like these have enabled ML-based
methods which can perform various tasks involving mobile
UIs, including providing accessibility annotations (Wu et al.,
2021; Li et al., 2020b), giving design feedback (Huang et al.,
2019; Swearngin & Li, 2019; Schoop et al., 2022b; Yuan &
Li, 2020), suggesting common interaction flows (Zhou & Li,
2021), summarizing screens (Wang et al., 2021), automat-
ing interaction with UIs (Li et al., 2020a; Sereshkeh et al.,
2020; Arsan et al., 2021), and creating rich embeddings
of UI image and text data for other downstream tasks (Li
et al., 2021; Bai et al., 2021; He et al., 2021). Almost all
currently available datasets are manually created in some
aspect – through manual user interactions with UIs, and/or
human annotations. The WebUI dataset (Wu et al., 2023)
used screenshots and automatically extracted metadata from
web pages to train visual UI models; however, web data
was generally noisy and their models needed additional fine-
tuning on smaller human-annotated datasets to perform well.

Our Never-ending UI Learner produces annotations through
the automated crawling of mobile applications. These anno-
tations continually update and refresh the crawler’s models,
improving its performance, and resulting in a continually
updated dataset that can be used to train other models. An
important advantage of this approach is that, unlike using
mobile UI data collected during a specific time period, data
produced by our crawler is always current, and can support
updating models to keep up with evolving UI design trends
in mobile applications.

2.2. Computational Modeling of Interaction

More recently, Reinforcement Learning (RL) has been ap-
plied to model user interactions with both physical and
digital interfaces. Oulasvirta et al. proposed a general
framework based on RL of how users incorporate cogni-
tive facilities, their experiences, and their environment in
understanding and interacting with computers (Oulasvirta
et al., 2022). Under this context, an important part of know-
ing how to interact with an interface is by understanding
its affordances. Affordances are the functional properties
of an object (e.g., UI) that suggest how it should be used
(Norman, 1988), and designer commentary suggests that
design patterns can make affordance discovery more diffi-
cult. Liao et al. used a virtual robot agent equipped with
sensors to simulate and learn how humans may discover
affordances in physical interfaces (e.g., buttons and slid-
ers) (Liao et al., 2022). Our work aims to achieve similar
goals of learning the affordances (e.g., tappability) and ca-
pabilities of interfaces. While our work does not directly
model the interactions of users through RL techniques, we
aim to achieve similar goals of learning of the affordances
(e.g., tappability) and capabilities of interfaces through in-
teracting with and inspecting live mobile apps. By applying
interaction learning to a mobile app automated crawler, we
can scale our experiments to a much larger scale, learning
from millions of interactions with UIs.

2.3. Continuous Machine Learning

A unique aspect of our work is the intention to continually
learn about UIs over time through sustained, potentially
endless interaction. Our work is related to active learning
(specifically online active learning), which is a field of ML
that seeks to improve models using only a limited num-
ber of human-labeled examples (Goodfellow et al., 2016).
These approaches often identify and prioritize difficult or
representative examples to produce the best possible model
from a small dataset. Our work is most related to Never-
Ending Learning, which is an ML paradigm for creating
systems that continually learn from acquired experience
rather than a single dataset. It was first applied to web-
based knowledge using the NELL system (Mitchell et al.,
2018). The system has been running for prolonged peri-

2



Towards Never-ending Learning of User Interfaces

ods of time (years) and has accumulated over 50 million
beliefs (i.e., hypothesized knowledge snippets), which is
possible only by processing large amounts of data that are
prohibitively expensive to annotate. This learning approach
introduces unique challenges, such as the need to learn from
new data while retaining previously acquired knowledge.
There are several techniques in the literature that can be
applied to retain previous knowledge that involved i) reg-
ularization (Li & Hoiem, 2017; Kirkpatrick et al., 2017),
ii) rehearsal-based approaches (Rebuffi et al., 2017), and
iii) techniques that address task-recency bias (Castro et al.,
2018). From a practical standpoint, implementation also
necessitates maintaining large ever-growing datasets col-
lected over time, which could either be addressed through a
robust crawling infrastructure or using dataset distillation
methods that keep the most relevant samples (Wang et al.,
2018; Nguyen et al., 2020; 2021). In this work, we apply
the never-ending learning paradigm to benefit automated UI
understanding systems by training models “from scratch”
and fine-tuning existing models to improve performance.

3. Never-ending UI Learner
To operationalize our approach, we built the Never-ending
UI Learner, a system that automatically downloads and
crawls publicly available apps using remotely operated de-
vices. Our current implementation and infrastructure is
based on iOS. We use stock factory reset devices that are
logged in to testing accounts that are not associated with
any real user data to avoid privacy concerns.

Note that unlike some crawlers that interact with apps using
an OS-provided programmatic interface such as the acces-
sibility API, our crawler interacts with the device through
the VNC remote desktop protocol, from which it receives
regular updates to the screen and processes them visually
and can send raw input events to the device to create tap,
swipe and keyboard actions. Using VNC, the Never-ending
UI Learner is able to reliably interact with more apps, learn
based on the same facilities that a human would and gen-
eralize to other platforms. In this section, we describe the
crawler’s architecture and behavior that enable it to perform
never-ending learning.

3.1. Architecture Overview

Our crawling architecture is shown in Figure 1. We imple-
mented a distributed crawling architecture which consists
of i) a central coordination server and ii) a large pool of
workers to parallelize the crawling process.

3.1.1. COORDINATOR SERVER

The crawler coordination server maintains a list of app IDs
to crawl which are sent to workers. The central server keeps

C
ra

w
le

r C
oo

rd
in

at
or

Crawler Workers

App Repository

Phone

Download and Install

Annotate

Figure 1. Architecture of our Never-ending UI Learner. The Never-
ending UI Learner is a parallelizable mobile app crawler which
consists of a coordinator-worker architecture. The crawler coor-
dinator distributes crawls to workers and maintains the dataset.
Each crawler worker is connected to a programatically controlled
mobile device which collects data and runs data post-processing.

track of successful and unsuccessful crawls, and it automati-
cally retries failed app crawls. App crawlers differ from web
crawlers in that they focus only on the app they are asked
to crawl, although limited cross-app interaction sometimes
does occur (e.g., clicking on a link or permission request
dialog). When all app IDs are exhausted, our crawler can
schedule itself to be run again after a fixed time period
(e.g., weekly). The list of app IDs can be modified between
crawls to add new apps or reflect changes in app availability.
While the majority of the app IDs remain the same, the apps
may change their appearance and behavior due to dynam-
ically updated content and new versions of the software.
Re-crawling the same apps regularly can enable our model
to adapt to design changes over time.

3.1.2. CRAWLER WORKER

Crawler workers are processes that interface with remotely
controlled mobile phones and process the collected data.
Each crawler worker downloads and installs a target app
whose ID is provided by the central server to the mobile
phone and then runs a program that crawls the app. Screen-
shots are collected during interactions and when the crawler
believes it has arrived at a new screen. The program can
use a variety of methods to explore the target app and as
a part of this paper, we run experiments to determine the
best crawling strategy for each of our never-ending learning
use-cases. We set a time-limit (5 minutes) on the maximum
duration of a crawl for a single app. Afterwards, the worker
processes the collected data (e.g., screenshots and interac-
tions) with models and heuristics to generate labels from
the observations. Both raw data and processed output is
uploaded to a coordinator server.

3



Towards Never-ending Learning of User Interfaces

3.2. Machine Learning Components

Our crawler contains a screen-level and element-level model
that allow it to understand the content on UIs it encounters.
We run these models every time a screenshot is captured to
augment it with useful semantics. Furthermore, the three
UI semantic models that we trained in using the crawler,
are designed as extensions of these base models, improving
overall efficiency.

3.2.1. SCREEN UNDERSTANDING

To keep track of its crawling progress in the app, our crawler
uses a model to generate semantic representations of screens.
We used a model introduced by previous work (Feiz et al.,
2022) that predicts whether two screenshots belong to the
same UI by encoding each as an embedding vector, which
the authors shared with us. Because significant variation can
be introduced by changes in state, such as a news app that
displays new content periodically, the model is designed to
learn the underlying structure of UIs. We made minor modi-
fications to the previous work in order to develop a model
that could run under our hardware constraints. Instead of
their recommended screen transformer model architecture,
we use their CNN-based model architecture, which is more
efficient to run despite somewhat lower performance (Feiz
et al., 2022). For further optimization, we use an Efficient-
Net (Tan & Le, 2019) model architecture as the backbone
instead of the original ResNet-18 (He et al., 2016), which
has more parameters. During training, we applied a data
augmentation approach (Thakur et al., 2020) to increase
performance. We followed all other aspects of the original
model training and our final CNN-based model achieves a
F1-score of 0.636.

3.2.2. ELEMENT UNDERSTANDING

To generate element semantics, we used an object detec-
tion model architecture that is similar to CenterNet (Zhou
et al., 2019). At a high level, the detection model slides a
window (via convolutions) over the image and featurizes
image sub-regions using a backbone network (MobileNet-
v1 (Howard et al., 2017)), resulting in embeddings for each
region. These embeddings are fed into a classification head
which produces per-class confidences, and regions with
high confidences are returned as detections. The model was
trained on the AMP dataset (Zhang et al., 2021), which
consists of 77,000 app screens collected and annotated by
crowdworkers from 4,000 iPhone apps. In addition to the
standard element type classification head, which was trained
with the rest of the object detection model, we added an
additional head for tappability prediction. The tappability
head is trained independently from the rest of the model
by first freezing the backbone and training the heads on
embeddings corresponding to detected elements.

4. Applying Never-ending Learning
In this section, we describe the application of our never-
ending learning framework to tappability prediction, and
we trained a model completely from crawler-generated data
We developed an interaction-based heuristic used by our
crawler to automatically generate new training examples
for our models. Next, we designed and trained models to
predict each of these semantics from a screenshot. Finally,
to contextualize these models in the context of never-ending
learning, we analyzed their performance over time.

Experimental Setup. We conducted experiments on a
list of 6,461 free iOS apps. For the purposes of evaluation,
all model training and experiments were performed with
randomized training (80%), validation (10%) , and testing
(10%) splits. We randomly partitioned our list of app IDs,
which ensured that all UI screens from an app were con-
tained in the same split. We use the term crawl epoch to
refer to one complete pass through the list of apps. Note
that unlike an epoch through a training dataset, the actual
contents of a crawl epoch might change from time to time,
due to the dynamic nature of apps.

Our experiments analyzed two aspects of the crawler’s per-
formance: i) crawling strategy and ii) performance over
time. We ran three variations of the crawler, which had
different crawling strategies: i) randomly selecting elements
on each screen (Random), ii) selecting elements that result
in low prediction confidence from the current models (Un-
certainty Sampled), and iii) a hybrid that for each crawl
epoch alternates between Random and Uncertainty Sampled
strategies. To evaluate the performance over time, we ran
each crawling strategy for five crawl epochs. Note that the
first crawl epoch for all strategies uses Random to train an
initial confidence-prediction model. In the Hybrid strategy,
because alternation happens at the epoch level, the second
epoch is crawled using the Uncertainty Sampled strategy
and thus through two epochs the inputs and results are identi-
cal for both the Uncertainty Sampled and Hybrid strategies.
The three strategies fully diverge starting from the third
epoch.

The crawler’s models were trained and evaluated after each
crawl epoch. Models were trained on all data collected so far
for 100,000 optimization steps, with early stopping. When
training, models were initialized using weights from the
last epoch’s checkpoint, which improved convergence. In
order to maintain a constant validation set across a varying
number of epochs, we only use the evaluation data split from
the first epoch for calculating performance metrics. Finally,
we performed additional sub-epoch evaluations during the
first crawl to analyze learning speed.

4



Towards Never-ending Learning of User Interfaces

Baseline Screen Initial Screen Post-Interaction Screen

Simulate TapSelect 
Element Take ScreenshotTake ScreenshotTake Screenshot

Establish Baseline Infer Effects of ActionPerform Action

Figure 2. This figure visualizes the steps to our tappability heuris-
tic. When the crawler arrives at a new screen, it takes two screen-
shots separated by 5 seconds as a baseline of visual change. Then,
a detected UI element is chosen and sent a tap. After waiting for
the screen to settle, a post-interaction screenshot is used to infer
the effects of the action.

4.1. Tappability

Tapping is the most common interaction on mobile devices,
yet it is often difficult to automatically determine if an el-
ement is tappable or not due to missing metadata and am-
biguous visual cues. Accurate inference of tappability could
aid designers in finding ambiguous visual elements and be
useful for generating metadata for repairing inaccessible
apps. Previous work has used human-annotated UI screen-
shots to train machine learning models of tappability. How-
ever, this process is surprisingly error-prone (Li et al., 2022;
Leiva et al., 2021; Swearngin & Li, 2019; Schoop et al.,
2022b) due to ambiguous visual cues, which suggests that
human-annotated screenshots are an unreliable source of
ground-truth for training tappability models. In contrast,
our crawler can use additional context from the entire in-
teraction, such as before and after screenshots instead of a
single before screenshot, to determine if tapping resulted
in an effect. Effects could either be state changes, like
flipping a toggle, or a transition to a new screen. We devel-
oped a heuristic for inferring tappability from our crawler’s
recorded interactions and found that it had high agreement
with human-annotated videos. We used heuristic-labeled
data to train an efficient tappability “head” model purely
from crawler-annotated data. After five crawl epochs, the
best-performing tappability model reached an F1 score of
0.860.

4.1.1. TAPPABILITY HEURISTIC

We developed a heuristic to infer the tappability of an ele-
ment based screenshots of the UI taken before, during, and
after a tap interaction. A tap may result in several differ-
ent scenarios, which are captured by our heuristic. First,

we use a screen similarity model to compare screenshots
taken before and after the tap to determine if the tap led
the crawler to a new screen. If a screen change was not
detected, the tap could have also changed the screen state.
We compute a pixel-based difference of the “before” and
“after” screenshots to identify possible visual indications
of local or global changes, such as tapping a checkbox or
refreshing screen content respectively. Finally, to reduce
false positives, the heuristic also uses multiple screenshots
captured before the tap to identify dynamic areas of the
screen (e.g., videos) whose visual changes are not related to
the tap.

To validate the accuracy of our heuristics, we compared its
results against human-labeled interaction videos. We used
our crawler to save short screen recordings of tap interac-
tions that were collected during crawls. Each example video
was approximately 10 seconds long and included the tap
location overlaid on the video and temporal context before
and after the tap interaction, such as including transition and
loading animations.

We randomly sampled a balanced subset of 1000 video clips
from our crawls and asked crowd-workers if each video clip
contained a tap interaction. We used standard classification
metrics to evaluate the accuracy of our heuristics, using the
human-annotated labels as ground truth. The tappability
heuristic had an overall accuracy of 0.934, and had a similar
number of false positives (38 instances) and false negatives
(28 instances).

4.1.2. MODEL IMPLEMENTATION

To predict tappability, we designed a model architecture
that operates as a “head” of our existing element detection
model (Figure 3). Heads are small sub-networks or set of
layers usually located close to the output layer of neural net-
work architectures and generate predictions from featurized
representations of the main input produced by a “backbone”
network. Since element detection is closely related to tappa-
bility, we hypothesized that the previously learned represen-
tations are likely to contain relevant information and greatly
accelerate tappability learning. Our head model is a simple
three-layer feed-forward model with an input size of 128, a
hidden size of 64 that we chose through manually tuning,
and an output size of 1 that gives tappability confidence. To
train it, we first froze the weights of the element detector’s
backbone network and randomly initialized the parameters
of our feed-forward network. While freezing most of the
model reduces its capacity, it also results in a significant
reduction in training time, since there are fewer parameters
to optimize. Then we trained the model to predict the tap-
pability of an element from a screenshot of the UI before
the tap, and we used the labels generated by our tappability
heuristic as ground truth.

5



Towards Never-ending Learning of User Interfaces

Ba
ck

bo
ne

 N
et

w
or

k

F
e
a
tu

riz
e
d

 Im
a
g

e
 R

e
g

io
n Element Type

Position

Tappable

Detection Head

Tappability Head
Trainable Params
Non-trainable Params

Figure 3. Architecture of our tappability model. The tappability
model is designed as a “head”, which is a sub-network of the UI
element detection model. The element detector featurizes image
regions in an input screenshot using a sliding window, which
results in a featurized image embedding for each detected object.
The main branch of the network (top) feeds in the embedding
to determine the region’s element type and position. We feed in
the same element embedding into a separate feedforward network
(bottom) to predict the probability that it is tappable.

4.1.3. PERFORMANCE EVALUATION

The results of our experiments are shown in Figure 4. While
all crawling strategies are successful in improving on the
initial model from the first epoch, the Random crawler has
the best final performance. In our experiments, the Ran-
dom crawler reaches the best final F1 score of 0.860 while
the Uncertainty Sampled crawler reaches the lowest final
F1 score of 0.853. While it is not possible to make a di-
rect comparison with previous work (Schoop et al., 2022a;
Swearngin & Li, 2019) because their experiments were run
on different datasets, it seems that our tappability model is
able to reach similar levels of performance in terms of F1
score after its first epoch.

We also conducted a comparison between the quality of
our automatically collected tappability dataset and human-
annotated ones, we used the labels provided by the AMP
dataset (Zhang et al., 2021). First, we trained our classifica-
tion head model architecture on AMP, which led to similar
performance (F1=0.81) to the originally reported numbers
(also F1=0.81), which used a tree-based model architec-
ture. However, when we used the model trained on human-
annotated data to predict the tappability of elements in our
crawled dataset, we observed significantly degraded per-
formance (F1=0.60), suggesting that the human-annotated
and crawler-generated labels disagree with each other. We
consider the heuristic-annotated data to be higher quality
since its performance was validated by crowdworkers with
access to a video clip of the entire tapping interaction, and

Figure 4. Performance of tappability over time. The model per-
formance increases most rapidly during the first crawl epoch and
the rate of improvement plateaus afterward. After the final epoch,
the random crawler achieves the highest F1 score of 0.860, and the
uncertainty sampled crawler has the lowest F1 score of 0.853.

previous work (Schoop et al., 2022a) has shown predicting
element tappability from a single screenshot leads to high
variance among raters.

5. Discussion
Our experiments revealed that visual UI models could effec-
tively be trained and improved through automated, continual
interaction. In this section, we discuss i) the performance
of our specific Never-ending UI Learner implementation, ii)
other types of interaction-based learning, and iii) the bene-
fits applying these strategies over very long or potentially
indefinite period of time

5.1. Never-ending UI Learner Performance

In this paper, we conducted experiments that evaluate the
Never-ending UI Learner and and its ability to automatically
learn tappability. Our experiments investigate two key ques-
tions: i) what is the best way for an automated crawler to
learn about UIs? and ii) how long would it need to run?

Crawling Strategy. Our experiments focused on three
crawling strategies for exploring mobile apps: i) random-
ized crawling, ii) uncertainty sampling, and iii) a hybrid
strategy. The random strategy led to the highest final accu-
racy. We initially hypothesized that uncertainty sampling,
an active learning technique that improves sampling effi-
ciency by prioritizing examples with low model confidence,
would let the model to learn more efficiently and effectively.
However, because our crawler updated its models (which are
used to compute the prediction confidences) every epoch

6



Towards Never-ending Learning of User Interfaces

instead of after each sample (as is often done in applica-
tions where uncertainty sampling is employed), it led to
imbalanced data collection during subsequent crawls, which
decreased performance. The hybrid crawler alternated be-
tween random and uncertainty sampling strategies, which
allowed it learn from low-confidence predictions while also
correcting the distribution shift induced by batched uncer-
tainty sampling. Overall, it led to similar performance to
pure random crawling.

Performance over Time. Even though our crawler is
meant to run indefinitely, our experiments focused on a
relatively short period of five crawl epochs. Each crawl
epoch lasted approximately half a week (clock time) when
parallellized across multiple crawler workers and consisted
of approximately 500 device-hours of app interaction, data
post-processing, and model training. Across all experiments,
the Never-ending UI Learner crawled for more than 5,000
device-hours, which was carried out over the span of ap-
proximately one month.

Our results show that this window is sufficient to learn an
accurate model purely from crawler-collected data. Overall,
we found that our model had rapid early learning followed
by slower improvement, which is consistent with empirical
observations in machine learning research that suggests an
exponential relationship between dataset size and model
performance (Sun et al., 2017). We believe these small
improvements are valuable, since their benefit can be mag-
nified when running over potentially very long periods of
time and allow the model to be continuously updated. We
plan to continue running the crawler, which doesn’t require
human supervision, to observe trends over longer periods of
time and maximize the potential of our automated learning
approach.

6. Limitations & Future Work
Our current implementation of a Never-ending UI learner is
limited and presents opportunities for future exploration.

First, our current crawler is implemented using a specific set
of tools and infrastructure customized for our target platform
(iOS). While we did not run experiments on other types of
UIs (e.g., Android, web-based interfaces), we expect our
results to be generalizable, since our approach does not rely
on any platform-specific metadata or APIs, and previous re-
search has shown semantic overlap between mobile and web
UIs (Wu et al., 2023). Our experiments primarily focused
on free apps that did not require authentication (e.g., regis-
tering and making an account), which biased the set of UI
screens reached by crawling. We used manually-designed
and verified our heuristic for tappability. We believe that
many other aspects of UIs and interaction can be formu-
lated using similar methods. A natural question to explore

is: what other types of semantics can be learned through
interaction? For example, related semantics such as “press-
and-hold” functionality can be discovered, and textboxes
can be better understood by observing what kind of software
keyboard (e.g., email or numeric keyboard) appears when it
is tapped on. Could this approach be extended to the prob-
lem of UI element detection more generally, which currently
relies heavily on human annotation? There are many details
that would need to inferred, such as the size and shape of
UI elements, and of course the element type. Many more
interactions would be needed from the crawler to determine
a bounding box for a given element, and it might be difficult
to infer complex element types, but a working system that
could do this might be able to learn about custom controls
and other non-standard elements that current models cannot
deal with today. Better automated understanding of UIs can
not only benefit downstream applications directly, but also
collect better data to train models.

Finally, ever-ending learning also introduces new challenges,
like “catastrophic forgetting,” the possibility of erasing pre-
viously learned information by training on new data, and
difficulties associated with large, ever-growing datasets. In
this paper, we conduct a preliminary exploration of methods
to address some of these challenges, such as uncertainty
sampling, which can help prioritize certain types of data.
Our literature review uncovered many other possible ma-
chine learning techniques that involve training the model
training process (Li & Hoiem, 2017; Kirkpatrick et al., 2017;
Rebuffi et al., 2017; Castro et al., 2018) or distilling the col-
lected dataset relevant samples (Wang et al., 2018; Nguyen
et al., 2020; 2021). We expect that they will be useful for
scaling and maximizing the performance of never-ending
UI learning.

7. Conclusion
In this work, we presented a technique for continuous ex-
traction and modeling of user interface semantics through
interactions, which we refer to as “never-ending learning
of UIs.” We implemented a mobile app crawler that down-
loads, installs, and crawls thousands of apps to observe UI
semantics and affordances in real-world apps, and we use
interaction-based heuristics to generate large datasets for
training a tappability prediction model, which has previously
relied on human-annotate data. We found that our crawler-
learned model can be more accurate than those trained from
human-annotated screenshots and continue to improve with
access to more training examples. The highly automated
nature of our approach allows us to apply it indefinitely,
with little to no human supervision, which can maximize
their performance and utility to downstream applications.

7



Towards Never-ending Learning of User Interfaces

References
Arsan, D., Zaidi, A., Sagar, A., and Kumar, R. App-based

task shortcuts for virtual assistants. In The 34th Annual
ACM Symposium on User Interface Software and Tech-
nology, pp. 1089–1099, 2021.

Bai, C., Zang, X., Xu, Y., Sunkara, S., Rastogi, A., Chen, J.,
and y Arcas, B. A. Uibert: Learning generic multimodal
representations for ui understanding. In International
Joint Conference on Artificial Intelligence, 2021.

Castro, F. M., Marı́n-Jiménez, M. J., Guil, N., Schmid, C.,
and Alahari, K. End-to-end incremental learning. In
Proceedings of the European conference on computer
vision (ECCV), pp. 233–248, 2018.

Deka, B., Huang, Z., Franzen, C., Hibschman, J., Afergan,
D., Li, Y., Nichols, J., and Kumar, R. Rico: A mobile
app dataset for building data-driven design applications.
In Proceedings of the 30th Annual ACM Symposium on
User Interface Software and Technology, UIST ’17, pp.
845–854, New York, NY, USA, 2017. Association for
Computing Machinery. ISBN 9781450349819. doi: 10.
1145/3126594.3126651. URL https://doi.org/
10.1145/3126594.3126651.

Feiz, S., Wu, J., Zhang, X., Swearngin, A., Barik, T., and
Nichols, J. Understanding screen relationships from
screenshots of smartphone applications. In 27th Inter-
national Conference on Intelligent User Interfaces, IUI
’22, pp. 447–458, New York, NY, USA, 2022. Associa-
tion for Computing Machinery. ISBN 9781450391443.
doi: 10.1145/3490099.3511109. URL https://doi.
org/10.1145/3490099.3511109.

Goodfellow, I., Bengio, Y., and Courville, A. Deep
Learning. MIT Press, 2016. http://www.
deeplearningbook.org.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

He, Z., Sunkara, S., Zang, X., Xu, Y., Liu, L., Wichers, N.,
Schubiner, G., Lee, R., and Chen, J. Actionbert: Lever-
aging user actions for semantic understanding of user
interfaces. Proceedings of the AAAI Conference on Artifi-
cial Intelligence, 35(7):5931–5938, May 2021. doi: 10.
1609/aaai.v35i7.16741. URL https://ojs.aaai.
org/index.php/AAAI/article/view/16741.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang,
W., Weyand, T., Andreetto, M., and Adam, H. Mobilenets:
Efficient convolutional neural networks for mobile vision
applications, 2017.

Huang, F., Canny, J. F., and Nichols, J. Swire: Sketch-based
user interface retrieval. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems,
CHI ’19, pp. 1–10, New York, NY, USA, 2019. Associa-
tion for Computing Machinery. ISBN 9781450359702.
doi: 10.1145/3290605.3300334. URL https://doi.
org/10.1145/3290605.3300334.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Des-
jardins, G., Rusu, A. A., Milan, K., Quan, J., Ramalho, T.,
Grabska-Barwinska, A., et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the national
academy of sciences, 114(13):3521–3526, 2017.

Kuznetsov, K., Fu, C., Gao, S., Jansen, D. N., Zhang,
L., and Zeller, A. Frontmatter: Mining android user
interfaces at scale. In Proceedings of the 29th ACM
Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Soft-
ware Engineering, ESEC/FSE 2021, pp. 1580–1584,
New York, NY, USA, 2021. Association for Comput-
ing Machinery. ISBN 9781450385626. doi: 10.1145/
3468264.3473125. URL https://doi.org/10.
1145/3468264.3473125.

Leiva, L. A., Hota, A., and Oulasvirta, A. Enrico: A
dataset for topic modeling of mobile ui designs. In
22nd International Conference on Human-Computer In-
teraction with Mobile Devices and Services, MobileHCI
’20, New York, NY, USA, 2021. Association for Com-
puting Machinery. ISBN 9781450380522. doi: 10.
1145/3406324.3410710. URL https://doi.org/
10.1145/3406324.3410710.

Li, G., Baechler, G., Tragut, M., and Li, Y. Learning to
denoise raw mobile ui layouts for improving datasets
at scale. In Proceedings of the 2022 CHI Confer-
ence on Human Factors in Computing Systems, CHI
’22, New York, NY, USA, 2022. Association for Com-
puting Machinery. ISBN 9781450391573. doi: 10.
1145/3491102.3502042. URL https://doi.org/
10.1145/3491102.3502042.

Li, T. J.-J., Popowski, L., Mitchell, T., and Myers, B. A.
Screen2vec: Semantic embedding of gui screens and
gui components. In Proceedings of the 2021 CHI Con-
ference on Human Factors in Computing Systems, CHI
’21, New York, NY, USA, 2021. Association for Com-
puting Machinery. ISBN 9781450380966. doi: 10.
1145/3411764.3445049. URL https://doi.org/
10.1145/3411764.3445049.

Li, Y., He, J., Zhou, X., Zhang, Y., and Baldridge, J. Map-
ping natural language instructions to mobile ui action
sequences. arXiv preprint arXiv:2005.03776, 2020a.

8

https://doi.org/10.1145/3126594.3126651
https://doi.org/10.1145/3126594.3126651
https://doi.org/10.1145/3490099.3511109
https://doi.org/10.1145/3490099.3511109
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://ojs.aaai.org/index.php/AAAI/article/view/16741
https://ojs.aaai.org/index.php/AAAI/article/view/16741
https://doi.org/10.1145/3290605.3300334
https://doi.org/10.1145/3290605.3300334
https://doi.org/10.1145/3468264.3473125
https://doi.org/10.1145/3468264.3473125
https://doi.org/10.1145/3406324.3410710
https://doi.org/10.1145/3406324.3410710
https://doi.org/10.1145/3491102.3502042
https://doi.org/10.1145/3491102.3502042
https://doi.org/10.1145/3411764.3445049
https://doi.org/10.1145/3411764.3445049


Towards Never-ending Learning of User Interfaces

Li, Y., Li, G., He, L., Zheng, J., Li, H., and Guan, Z. Wid-
get captioning: Generating natural language description
for mobile user interface elements. In Proceedings of
the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 5495–5510, 2020b.

Li, Z. and Hoiem, D. Learning without forgetting. IEEE
transactions on pattern analysis and machine intelligence,
40(12):2935–2947, 2017.

Liao, Y.-C., Todi, K., Acharya, A., Keurulainen, A., Howes,
A., and Oulasvirta, A. Rediscovering affordance: A re-
inforcement learning perspective. In Proceedings of the
2022 CHI Conference on Human Factors in Computing
Systems, CHI ’22, New York, NY, USA, 2022. Associa-
tion for Computing Machinery. ISBN 9781450391573.
doi: 10.1145/3491102.3501992. URL https://doi.
org/10.1145/3491102.3501992.

Mitchell, T., Cohen, W., Hruschka, E., Talukdar, P., Yang,
B., Betteridge, J., Carlson, A., Dalvi, B., Gardner, M.,
Kisiel, B., Krishnamurthy, J., Lao, N., Mazaitis, K.,
Mohamed, T., Nakashole, N., Platanios, E., Ritter, A.,
Samadi, M., Settles, B., Wang, R., Wijaya, D., Gupta,
A., Chen, X., Saparov, A., Greaves, M., and Welling, J.
Never-ending learning. Commun. ACM, 61(5):103–115,
apr 2018. ISSN 0001-0782. doi: 10.1145/3191513. URL
https://doi.org/10.1145/3191513.

Nguyen, T., Chen, Z., and Lee, J. Dataset meta-
learning from kernel ridge-regression. arXiv preprint
arXiv:2011.00050, 2020.

Nguyen, T., Novak, R., Xiao, L., and Lee, J. Dataset distil-
lation with infinitely wide convolutional networks. Ad-
vances in Neural Information Processing Systems, 34:
5186–5198, 2021.

Norman, D. A. The psychology of everyday things. Basic
books, 1988.

Oulasvirta, A., Jokinen, J. P. P., and Howes, A. Com-
putational rationality as a theory of interaction. In
Proceedings of the 2022 CHI Conference on Human
Factors in Computing Systems, CHI ’22, New York,
NY, USA, 2022. Association for Computing Machin-
ery. ISBN 9781450391573. doi: 10.1145/3491102.
3517739. URL https://doi.org/10.1145/
3491102.3517739.

Rebuffi, S.-A., Kolesnikov, A., Sperl, G., and Lampert, C. H.
icarl: Incremental classifier and representation learning.
In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pp. 2001–2010, 2017.

Schoop, E., Zhou, X., Li, G., Chen, Z., Hartmann, B., and
Li, Y. Predicting and explaining mobile ui tappability

with vision modeling and saliency analysis. In Proceed-
ings of the 2022 CHI Conference on Human Factors in
Computing Systems, pp. 1–21, 2022a.

Schoop, E., Zhou, X., Li, G., Chen, Z., Hartmann, B., and Li,
Y. Predicting and explaining mobile ui tappability with
vision modeling and saliency analysis. In Proceedings of
the 2022 CHI Conference on Human Factors in Comput-
ing Systems, CHI ’22, New York, NY, USA, 2022b. Asso-
ciation for Computing Machinery. ISBN 9781450391573.
doi: 10.1145/3491102.3517497. URL https://doi.
org/10.1145/3491102.3517497.

Sereshkeh, A. R., Leung, G., Perumal, K., Phillips, C.,
Zhang, M., Fazly, A., and Mohomed, I. Vasta: a vision
and language-assisted smartphone task automation sys-
tem. In Proceedings of the 25th international conference
on intelligent user interfaces, pp. 22–32, 2020.

Sun, C., Shrivastava, A., Singh, S., and Gupta, A. Revisiting
unreasonable effectiveness of data in deep learning era.
In Proceedings of the IEEE international conference on
computer vision, pp. 843–852, 2017.

Swearngin, A. and Li, Y. Modeling mobile interface tap-
pability using crowdsourcing and deep learning. In
Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems, CHI ’19, pp. 1–11,
New York, NY, USA, 2019. Association for Comput-
ing Machinery. ISBN 9781450359702. doi: 10.1145/
3290605.3300305. URL https://doi.org/10.
1145/3290605.3300305.

Tan, M. and Le, Q. Efficientnet: Rethinking model scal-
ing for convolutional neural networks. In International
conference on machine learning, pp. 6105–6114. PMLR,
2019.

Thakur, N., Reimers, N., Daxenberger, J., and Gurevych,
I. Augmented sbert: Data augmentation method for im-
proving bi-encoders for pairwise sentence scoring tasks.
arXiv preprint arXiv:2010.08240, 2020.

Wang, B., Li, G., Zhou, X., Chen, Z., Grossman, T., and Li,
Y. Screen2words: Automatic mobile ui summarization
with multimodal learning. In The 34th Annual ACM
Symposium on User Interface Software and Technology,
pp. 498–510, 2021.

Wang, T., Zhu, J.-Y., Torralba, A., and Efros, A. A. Dataset
distillation. arXiv preprint arXiv:1811.10959, 2018.

Wu, J., Zhang, X., Nichols, J., and Bigham, J. P. Screen
parsing: Towards reverse engineering of ui models from
screenshots. In The 34th Annual ACM Symposium on
User Interface Software and Technology, UIST ’21, pp.
470–483, New York, NY, USA, 2021. Association for

9

https://doi.org/10.1145/3491102.3501992
https://doi.org/10.1145/3491102.3501992
https://doi.org/10.1145/3191513
https://doi.org/10.1145/3491102.3517739
https://doi.org/10.1145/3491102.3517739
https://doi.org/10.1145/3491102.3517497
https://doi.org/10.1145/3491102.3517497
https://doi.org/10.1145/3290605.3300305
https://doi.org/10.1145/3290605.3300305


Towards Never-ending Learning of User Interfaces

Computing Machinery. ISBN 9781450386357. doi: 10.
1145/3472749.3474763. URL https://doi.org/
10.1145/3472749.3474763.

Wu, J., Wang, S., Shen, S., Peng, Y.-H., Nichols, J., and
Bigham, J. P. Webui: A dataset for enhancing visual
ui understanding with web semantics. arXiv preprint
arXiv:2301.13280, 2023.

Wu, Z., Jiang, Y., Liu, Y., and Ma, X. Predicting and diag-
nosing user engagement with mobile ui animation via a
data-driven approach. In Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems,
CHI ’20, pp. 1–13, New York, NY, USA, 2020. Associa-
tion for Computing Machinery. ISBN 9781450367080.
doi: 10.1145/3313831.3376324. URL https://doi.
org/10.1145/3313831.3376324.

Yuan, A. and Li, Y. Modeling human visual search perfor-
mance on realistic webpages using analytical and deep
learning methods. In Proceedings of the 2020 CHI con-
ference on human factors in computing systems, pp. 1–12,
2020.

Zhang, X., de Greef, L., Swearngin, A., White, S., Murray,
K., Yu, L., Shan, Q., Nichols, J., Wu, J., Fleizach, C., et al.
Screen recognition: Creating accessibility metadata for
mobile applications from pixels. In Proceedings of the
2021 CHI Conference on Human Factors in Computing
Systems, pp. 1–15, 2021.

Zhou, X. and Li, Y. Large-scale modeling of mobile user
click behaviors using deep learning. In Proceedings of
the 15th ACM Conference on Recommender Systems, pp.
473–483, 2021.

Zhou, X., Wang, D., and Krähenbühl, P. Objects as points,
2019.

10

https://doi.org/10.1145/3472749.3474763
https://doi.org/10.1145/3472749.3474763
https://doi.org/10.1145/3313831.3376324
https://doi.org/10.1145/3313831.3376324

