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ABSTRACT 
Acoustic activity recognition has emerged as a foundational 
element for imbuing devices with context-driven capabilities, 
enabling richer, more assistive, and more accommodating 
computational experiences. Traditional approaches rely ei-
ther on custom models trained in situ, or general models pre-
trained on preexisting data, with each approach having accu-
racy and user burden implications. We present Listen 
Learner, a technique for activity recognition that gradually 
learns events specific to a deployed environment while min-
imizing user burden. Specifically, we built an end-to-end 
system for self-supervised learning of events labelled 
through one-shot interaction. We describe and quantify sys-
tem performance 1) on preexisting audio datasets, 2) on real-
world datasets we collected, and 3) through user studies 
which uncovered system behaviors suitable for this new type 
of interaction. Our results show that our system can accu-
rately and automatically learn acoustic events across envi-
ronments (e.g., 97% precision, 87% recall), while adhering 
to users’ preferences for non-intrusive interactive behavior. 
Author Keywords 
Automatic class discovery; Acoustic activity recognition 
CCS Concepts 
Human-centered computing~ Ubiquitous and mobile com-
puting systems and tools. 

INTRODUCTION 
Smart devices are becoming more prevalent in peoples’ liv-
ing environments, accelerating the vision of ubiquitous com-
puting and the Internet-of-Things (IoT). However, these de-
vices still lack contextual sensing capabilities— they have 
minimal understanding of what is happening around them, 
therefore limiting their potential to enable truly assistive 
computational experiences. In response, acoustic activity 

recognition has emerged as a practical modality for contex-
tual sensing. This is chiefly due to the prevalence of micro-
phones and their robustness to occlusion, as well as the avail-
ability of hardware that can process high-fidelity acoustic in-
formation on-device (i.e., at the edge). 

A key challenge for acoustic activity recognition is building 
classifiers that can recognize highly localized events with 
minimal user intervention or in situ training. To train such 
classifiers, two predominant approaches have been proposed, 
with particular accuracy and user burden implications (Fig-
ure 1). First is to train a system manually, after it is deployed, 
most often by demonstrating different activities and having 
a user provide class labels (Figure 1, top-right). Because data 
is collected in-situ, accuracy tends to be quite high. However, 
the burden to the user is also high. The other approach is to 
provide users with pre-trained general classifiers that work 
“out of the box” (Figure 1, bottom-left). This technique is 
achieved by training a classifier on a large, preexisting cor-
pus of acoustic data. However, because the classifier has no 
data for a user’s specific environment, it tends to be less ac-
curate, but the burden to the user is very low. 

We propose and evaluate a middle-ground approach that 
seeks to provide high classification accuracy, while minimiz-
ing user burden. Our approach (Figure 2) requires no up-
front data, and instead, learns acoustic events over time, re-
quiring no manual demonstration. Instead, our system learns 
events in situ, and thus it is highly tuned to its local environ-
ment and events of interest, offering superior accuracy than 
pre-trained classifiers. 
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Figure 1. A design landscape of different approaches for activ-
ity recognition, plotted by classification accuracy (Y-axis) and 
user burden (X-axis). Ideal approaches (top-left) offer high ac-

curacies with minimal user burden. 



  

LISTEN LEARNER 
In this paper, we characterize an operational space for per-
sonalized Human Activity Recognition (HAR [14]) systems 
using two factors that significantly impact practicality – clas-
sification accuracy and user burden. We contribute an ap-
proach that optimizes this tradeoff with an interactive, low-
burden approach, along with an end-to-end hardware and 
software implementation supporting several virtual assistant-
driven interaction techniques. Finally, we evaluate both 
quantitative (i.e., benchmarks and comparisons of our sys-
tem’s performance in a variety of contexts) and qualitative 
(i.e., users’ preferences for interactive ML systems) aspects 
of our system. 
Example Interaction 
To illustrate the utility of Listen Learner, we describe the fol-
lowing vignette: 

Setup. Lisa deploys a smart speaker, equipped with Listen 
Learner, on her kitchen countertop. The system starts with 
no data or knowledge about its environment. As sounds in 
Lisa's kitchen occur, the device clusters similar acoustic 
events. No raw audio is saved to the device or to the cloud. 

One-Shot Labeling. Eventually, the system becomes confi-
dent that an emerging cluster of data is a unique sound, at 
which point, it prompts Lisa for a label the next time it occurs. 
The system asks: “what sound was that?”, and Lisa responds 
with: “that is my faucet.” As time goes on, the system can 
continue to intelligently prompt Lisa for labels, thus slowly 
building up a library of recognized events. 

Verification and Refinement. Instead of asking an open-
ended question, the system can make an initial guess (using 
a general pretrained model). The system might ask: “was 
that a blender?”, in which Lisa responds: “no, that was my 
coffee machine.” In other cases (e.g., ambiguous cluster 
boundaries), the system can ask refinement questions such as: 
“was that a faucet or a microwave?”, in which Lisa responds: 
“it’s a microwave.” The library of sounds that the system 
builds over time can then be used to power new assistive and 
smart applications.  

Unlike traditional supervised learning methods that require 
numerous user-labelled examples in the training phase, our 
approach inverts the annotation and training process. Our 
system learns an ensemble of classifiers without any user in-
tervention, and only later is the user queried in situ to provide 
a label for the model the next time it is triggered.  
RELATED WORK 
We situate our system in the literature of contextual sensing 
for activity recognition and machine learning methods for 
real-world activity recognition. 
Audio Event Classification 
Optical sensors, such as RGB cameras [23][32][35][36] or 
depth sensors [38][82] are popular approaches for human ac-
tivity recognition [14], but these systems are susceptible to 
occlusion. In response, audio-based sensing has emerged as 
a complementary modality, deployed in both localized 
[44][45][68][80] and wide-area applications [34][62][69]. 
Approaches for distilling acoustic information include com-
puting statistical features on time-domain [70], frequency 
[46][70] or wavelet representations [70][72]. More recently, 
deep-learning architectures have been used to model the in-
herent non-linearities in acoustic data. Here, audio signals 
are treated as one-dimensional signals [8][51], or two-dimen-
sional spectrograms [24] that serve as input to convolutional 
neural networks (CNNs), previously used for image classifi-
cation [24][34]. Listen Learner uses the “bottleneck” embed-
ding representation of a CNN (similar to those previously 
used for audio event discovery and activity recognition 
[28][41]), but fine-tuned on a library of sound effects [34]. 
Generalizable Machine Learning Methods for HAR 
A major challenge of HAR is training highly robust machine 
learning models (i.e., accurate classification, sparse false 
positives). One approach is to employ semi-supervised learn-
ing techniques such as Positive Unlabeled Learning (PUL) 
[20] to learn from a small number of positively labelled sam-
ples. In the context of HAR, Nguyen et al. propose using a 
specific form of PUL, called mPUL to decrease the amount 
of training data and reduce false-positives by assuming 
“open-world conditions”[49]. Others have focused on active 
learning to intelligently scaffold the training process [26][43] 

 
Figure 2. Listen Learner overview. A smart device is deployed in a user’s environment (A). Over time, using its built-in micro-

phone, it clusters the various sounds it hears (B and D). When the system becomes confident that a set of sounds it has heard is a 
singular activity, it prompts the user for a label (C). That sound cluster is then labeled (F), allowing for future recognition of that 
sound. Over time, the system builds up many clusters, prompting the user occasionally (G and H), allowing for a wide range of 

events and activities to be recognized at high accuracy. 



  

[66]. A related strategy is to model user activity using a set 
of semantic attributes—allowing activities to be defined in a 
more generalizable way [3][50][75]. 
Relevant Machine Learning Approaches 
One of the goals of our system is to require limited training 
labels from users. Relevant approaches include co-training 
[13], a semi-supervised learning method [16] for leveraging 
a small number of examples and a large unlabeled set to cre-
ate a model with better classification performance. Likewise, 
one-shot and zero-shot learning approaches allow models to 
recognize previously unseen classes with very few (or zero) 
labelled training instances [79]. Our system most closely re-
sembles incremental learning, a learning approach that ac-
commodates new data to continuously improve and extend a 
model’s knowledge without fully retraining the model [56]. 
This approach to learning has been explored in many do-
mains, including computer vision [40][57], audio event 
recognition [19], natural language processing [15][81] and 
activity recognition [47][61]. 

SoundSense [44] is most similar to Listen Learner, in that it 
also provides a platform for audio event discovery. Sound-
Sense was implemented on a mobile platform and starts with 
a pre-existing set of classes that it uses to bootstrap recogniz-
ers for new classes. SoundSense uses a Bayesian classifier 
and Hidden Markov Model (HMM) to learn new audio 
events, which results in assumptions about the distribution of 
audio events (e.g., can be modeled by a Gaussian). The 
model also requires a number of parameters to be set that can 
be difficult without a priori knowledge. In our evaluation, 
we show that Listen Learner has superior performance to a 
baseline Gaussian Mixture Model (GMM), another type of 
model that assumes a Gaussian distribution of data. 
IMPLEMENTATION  
We implemented Listen Learner as an end-to-end system that 
automatically generates acoustic event classifiers over time. 
Here, we describe our sensing hardware, data processing 
pipeline, and self-supervised learning algorithm. 
Hardware 
Our prototype consists of both a deployed sensor device 
(analogous to a smart speaker; Figure 3), and a processing 
server (on which the self-supervised learning algorithm is ex-
ecuted). Specifically, we use a Raspberry Pi 3 Model B+ with 
a 4-microphone array (seeedstudio.io), which we use to com-
pute acoustic direction-of-arrival (part of our feature set). We 
also connect a speaker using its 3.5 mm audio jack. We set 
the microphone sampling rate to 16 kHz 16-bit integer linear 
PCM. The device is configured to connect to WiFi and up-
load featurized audio data to our data processing server (12-
core Mac Pro, 64GB RAM).  
Cluster-Classify Algorithm 
We designed a self-supervised algorithm that identifies sali-
ent acoustic events, generating corresponding classifiers for 
activity recognition, while minimizing user effort (Figure 4). 
More specifically, the algorithm learns an ensemble model 
by iteratively clustering unknown samples, and then training 

classifiers on the resulting cluster assignments. This allows 
for a “one-shot” interaction with the user to label portions of 
the ensemble model when they are activated. 
Segmentation 
First, we segment audio events using an adaptive threshold 
that triggers when the microphone input level (dBFS) is 1.5 
standard deviations higher than the mean of the past minute. 
We employ hysteresis techniques (i.e., for debouncing) to 
further smooth our thresholding scheme. While many envi-
ronments have persistent and characteristic background 
sounds (e.g., HVAC), we ignore them (along with silence) 
for computational efficiency. Note that incoming samples 
were discarded if they were too similar to ambient noise, but 
silence within a segmented window is not removed. 
Featurization 
Next, we convert audio segments into feature embeddings 
extracted from the last hidden layer of a VGG-ish [67] deep 
CNN audio model [24]. This model was initially trained on 
the YouTube-8M dataset, and further augmented with a li-
brary of professional sound effects [34]. We construct 96×64 
log-mel spectrogram patches as input to the CNN using a 
non-overlapping 960 ms sliding window over audio input. 
For example, an audio clip of a faucet running for 9.6 sec-
onds would produce 10 featurized embeddings. In our proto-
type hardware, this computation takes an extra one second 
per 960 ms of audio. While this causes some input frames to 
be dropped, we do not find this limiting (i.e., due to the sus-
tained nature of most human activities). The choice of using 
deep neural network embeddings, which can be seen as 
learned low-dimensional representations of input data [12], 
is consistent with the manifold assumption (i.e., that high-
dimensional data roughly lie on a low-dimensional manifold 
[16]). By performing clustering and classification on this 
low-dimensional learned representation, our system is able 
to more easily discover and recognize novel sound classes. 
Clustering 
Next, we infer the location of class boundaries from our low-
dimensional learned representations using unsupervised 
clustering methods. Our approach is supported by the cluster 
assumption, which states that if points are in the same cluster, 
they are likely to belong to the same class and that the deci-
sion boundary between classes should lie in a low-density 
region [16]. For our implementation, we use a hierarchical 
agglomerative clustering (HAC) algorithm known as Ward’s 

 
Figure 3. For data collection and experiments, we used a fleet 

of 16 Raspberry Pi 3 B+ with 4-mic microphone shields. 



  

method [77]. Using the linkage matrix produced by the algo-
rithm, we take all clusters merged with size 𝑛!"# ≤ 𝑛 ≤
𝑛!$%  as candidate clusters representing classes of audio 
events. Note that these candidate clusters may overlap with 
one another, but we evaluate all possible groupings of data 
to find the best representation of classes.  
Classification 
While our clustering algorithm separates data into clusters by 
minimizing the total within-cluster variance, we also seek to 
evaluate clusters based on their classifiability. Following the 
clustering stage, we use a unsupervised one-class support 
vector machine (SVM) algorithm that learns decision bound-
aries for novelty detection [65]. For each candidate cluster, a 
one-class SVM is trained on a cluster’s data points, and its 
F1 score is computed with all samples in the data pool. 
Model Construction 
Traditional clustering algorithms seek to describe input data 
by providing a cluster assignment, but this alone cannot be 
used to discriminate unseen samples. Thus, to facilitate our 
system’s inference capability, we construct an ensemble 
model using the one-class SVMs generated from the previ-
ous step. We adopt an iterative procedure for building our 
ensemble model by selecting the first classifier with an F1 
score exceeding the threshold, 𝜃&'( and adding it to the en-
semble. When a classifier is added, we run it on the data pool 
and mark samples that are recognized. We then restart the 
cluster-classify loop until either 1) all samples in the pool are 
marked or 2) a loop does not produce any more classifiers. 
Incremental Learning 
Our system is designed for longitudinal deployment, where 
more data is revealed to our system over time. As described 
earlier, the data pool grows as more audio is captured from 
the environment. When a new batch of data is added, we re-
run our algorithm. 

Of course, there are computational and data storage limits. 
As a practical compromise, in our current implementation, 

we only store audio samples within a fixed time window (e.g., 
one-week’s worth of data). When new data is received be-
yond this threshold, the oldest samples are discarded. Other 
methods are also possible, depending on the hardware or de-
sired behavior (e.g., random subsampling of the data pool, or 
a replacement scheme that discards data points based on clas-
sification accuracy rather than age). 
Data Management 
For research purposes, we chose to aggregate data collected 
from the sensing devices on a central server, which also per-
mitted us to process data more efficiently. In our study de-
ployment, we only transmitted and stored featurized data, 
which is computed on the sensing board. The algorithm has 
access to a data pool, which contains featurized data that is 
not yet recognized by our system. Data is added to the pool 
in batches (e.g., after the end of each day, or after 𝑛 samples). 
Audio Directionality 
Our sensing hardware includes a microphone array, allowing 
additional directionality information, which serves as a com-
plementary sensing modality. We chose to represent this us-
ing the x and y components of a normalized unit vector. Dur-
ing the clustering step, we use a late-fusion approach [9] that 
performs clustering on two sources of data: 1) clusters based 
on directional information, and 2) clusters from audio em-
beddings. Clusters from both sources are provided to the 
classify step, with directional information considered first. 
During the classification stage, we allow the classifier to 
learn the relative weights of each modality by using an early-
fusion approach (i.e., concatenating audio embeddings with 
directionality vectors). 
User Interaction 
Once our system has generated classifiers for the model, the 
last step is to seek labels from users. Numerous approaches 
are possible, depending on the platform. Examples include 
voice-based conversation agents [53][59][60], text response 
for screen-based hardware, and push notifications for mobile 
devices. As a proof-of-concept prototype, we programmed 
our device to act like a smart speaker that queries the user 
using a simple speech interface. When an unlabeled class in 
the model is activated, the system asks the user, “what was 
that sound?” immediately after the sound event. We use a 
commercial voice transcription web service to recover the ut-
terance text and extract the last noun chunk using an off-the-
shelf NLP package [25]. If no noun chunks are detected, the 
entire response is used as a label.  
Privacy Preservation 
While our acoustic approach to activity recognition affords 
benefits such as improved classification accuracy and incre-
mental learning capabilities, the capture and transmission of 
audio data, especially spoken content, should raise privacy 
concerns. In an ideal implementation, all data would be re-
tained on the sensing device (though significant compute 
would be required for local training). Alternatively, compute 
could occur in the cloud with user-anonymized labels of 
model classes stored locally. 

 
Figure 4. Listen Learner architecture and data flow. 



  

HYPERPARAMETER TUNING 
We adjust our system’s behavior using the following param-
eters: 𝜃&'( (classifier acceptance threshold), 𝑛!"# (min. clus-
ter size), 𝑛!$% (max. cluster size), and 𝜈 (number of support 
vectors [64] of the one-class SVM). We conducted a series 
of preliminary studies to inform the design of our algorithm 
and for hyperparameter tuning. 
Tuning Metrics 
Traditional clustering metrics include cluster purity [28], 
conditional entropy [58], and other information-based ap-
proaches [73]. By running our generated model on a dataset, 
we can create cluster assignments conditioned on these met-
rics. We use an objective function that takes into account the 
classification performance on unseen data, based on the fol-
lowing equation: 

𝜇 = 𝛼 ∙ F1$&&)*+ + (1 − 𝛼) ∙ 𝑟$&&)*+ 
where 𝛼  represents the weighted average between the F1 
score of accepted samples and the models’ acceptance rate. 
As we later describe, a can be adjusted to influence charac-
teristic system behaviors (e.g., relaxed or conservative). 
Tuning Setup 
We tuned our system’s hyperparameters empirically, using 
two datasets for audio events and environmental sounds. 
Specifically, we use the ESC-10 subset of the ESC-50 dataset 
(10 classes, 400 clips) [55] and UrbanSound8K (10 classes, 
8732 clips) [63]. These datasets contain ground-truth labels, 
thereby allowing us to find optimal parameters for our sys-
tem. Further, we randomly subsample 3000 0.96-second 
windows from UrbanSound8K to simulate a real-world us-
age period (10 event classes × 10 events per day × 30 days). 
Each dataset is shuffled and split into a tuning set (25%), 
used for hyperparameter tuning, and an evaluation set (75%), 
used later for our formal evaluation. We further divide our 
tuning set into three partitions for training (60%), holdout 
(20%), and testing (20%).  
Tuning Procedure 
The algorithm is initially executed using hyperparameters 
derived from the training set. The extracted unlabeled clas-
sifiers are labelled by randomly selecting samples from the 
holdout set (without replacement) and taking the ground 
truth label of the first instance that was recognized. This sim-
ulates our system’s labelling strategy of soliciting labels 
from the user the first time it is triggered. The ensemble 
model is then evaluated on the test set to calculate F1accept and 
raccept. This process is repeated 10 times (per hyperparameter 

combination), and the mean is used by the objective function. 
Finally, for our hyperparameter search, we use a parameter-
free black-box optimizer [33] to maximize the objective 
function, and we run the optimizer for 50 iterations. 
Algorithm Behavior & Results 
We now describe three example system behaviors derived 
from characteristic hyperparameters: 

Relaxed (low a) - This setting aims to cluster and clas-
sify as many sound events as possible, even when con-
fidence is low. Although more sounds are recognized, 
accuracy is generally lower. 

Balanced (medium a) – This setting produces an inter-
mediate behavior that seeks to accept a moderate num-
ber of samples with usable levels of accuracy.  

Conservative (high a) – This setting accepts new clas-
ses only when confidence is extremely high. This re-
sults in more events being unclustered (and thus ig-
nored), but recognized sounds are more accurate. 

These settings were acquired by manually fine-tuning the 
output of the black-box hyperparameter optimizer. For the 
ESC-10 dataset, we use a values of 0.4, 0.75, and 0.9 for Re-
laxed, Balanced, and Conservative, respectively. For the Ur-
banSound8K dataset, we use a values of 0.6, 0.8, and 0.9 for 
Relaxed, Balanced, and Conservative, respectively. The in-
verse relationship between F1 accuracy and acceptance rate 
is shown in Table 1.  
In-The-Wild Data Collection 
Setup. In addition to our preliminary experiments for hy-
perparameter tuning, we also performed a 10 day-long in-
the-wild data collection. Because the primary motivation of 
Listen Learner is to support low-burden personalized acous-
tic activity recognition in situ, we wanted to run our system 
under real-world conditions to better characterize sound 
events present in entirely uncontrolled environments as a 
compliment to datasets like ESC-50 and UrbanSound8K.  

Procedure. Our in-the-wild investigation was conducted 
across a period of one and a half weeks at seven locations 
(seven rooms, five buildings). Specifically, they include a 
mix of high-activity and low-activity environments: office, 
basement, kitchen 1, bathroom 1, living room, kitchen 2, and 

Table 1. F1 scores and acceptance rates on the ESC-10 (ESC) 
and UrbanSound8K (U8K) datasets, based on different  

hyperparameter behaviors. 

Behavior F1 Score Accept. Rate 

 ESC U8K ESC U8K 
Relaxed 0.40 0.48 0.50 0.39 
Balanced 0.97 0.79 0.14 0.25 
Conservative 1.00 1.00 0.10 0.13 

 

Table 2. Number of discovered classes by room and their hy-
perparameter profiles. Living room had the most varied acous-

tic profile, primarily due to edge-case appliances e.g., TV. 

Location Relaxed Balanced Conservative 

Office 38 26 7 
Basement 10 9 4 
Kitchen 1 28 19 7 
Bathroom 1 6 13 8 
Living Room 176 93 28 
Kitchen 2 13 24 7 
Bathroom 2 22 12 8 

 



  

bathroom 2. Recording consent was obtained from both the 
owners of the spaces and any visitors.  

Results. For each behavior setting, we take the mean value 
between the ESC-10 and UrbanSound8K hyperparameter 
value for use on our in-the-wild collected dataset. An average 
of 41.9 (SD=55.7), 27.9 (SD=27.3), 9.9 (SD=7.5) classes 
were discovered by the system using the Relaxed, Balanced, 
and Conservative settings, respectively. It is possible that 
multiple classes are generated by the same object and would 
be given the same label by the user (e.g., microwave running 
and microwave door closing both being labeled as “micro-
wave”). We report room-specific results in Table 2, which 
shows that our system can effectively discover classes in 
real-world environments, and hyperparameters tuned using 
our objective function produces consistent behaviors across 
datasets. 
EVALUATION 
Our in-the-wild investigation was useful for characterizing 
key aspects of our system, but without reliable ground truth, 
it was impossible to quantify its classification and discovery 
performance. In response, we conducted a secondary evalu-
ation wherein we collected acoustic data along with ground 
truth labels. We quantified system performance over time by 
categorizing model output into three possibilities: 1) correct 
(recognized sound belongs to a cluster and is classified cor-
rectly), 2) incorrect (recognized sound belongs to a cluster 
but is misclassified), and 3) ignored (sound event is ignored 
by the system). 
Datasets 
We conducted our evaluation with three datasets of varying 
sizes and class counts.  

Preexisting Datasets. The first two datasets (ESC-10 and Ur-
banSound8K) were previously used for hyperparameter tun-
ing. In this evaluation, we utilized unused data we specifi-
cally held out for this evaluation. However, we note these 
downloaded datasets were recorded with different micro-
phones in different environments, and thus less representa-
tive of the type of data we envision for our system.  

Environment-Deployed Dataset. In addition to the two exist-
ing datasets, we also collected real-world data from six envi-
ronments over a one-week period using our sensing hardware. 
Following previous audio-based HAR work [34][41], we se-
lected the following environments: an apartment bathroom, 
an apartment kitchen, a detached house bathroom, a wood-
working shop, an electronics workshop, and a commercial 
office. For each environment, we selected 5-7 events of in-
terest and recorded five 20-second clips of each event per day. 
Data collection was performed in a controlled setting (i.e., 
minimal competing events) and in the absence of any by-
standers, to preserve their privacy. Mobile objects or actions 
that could be performed in different locations (e.g., speech, 
electric toothbrush) had their locations randomized in the 
room across recording sessions. The position and orientation 
of the recording device was kept constant across sessions. 

We repeated this data collection process for one week. In to-
tal, we collected 1295 audio clips (432 minutes), resulting in 
26,970 featurized samples. 
Procedure 
We followed an evaluation procedure similar to our hyperpa-
rameter tuning experiments. Specifically, we divided each 
dataset (two preexisting, one real-world) into training (60%), 
holdout (20%), and test sets (20%). We simulate the passage 
of time by gradually expanding the portion of the training set 
used by our system (i.e., using the next 100 samples for the 
offline datasets, or using timestamps for the real-world da-
taset). We further analyzed our system’s accuracy on the por-
tion of accepted samples, breaking it down by class and com-
paring against two baseline models. Specifically, we meas-
ure the % of Correctly classified instances, % of Incorrectly 
classified instances, and % of Ignored instances (e.g., low 
confidence). It is possible to interpret our results using tradi-
tional metrics such as Precision (% Correct / % Accepted) 
and Recall (% Correct). 
RESULTS 
In this section, we discuss evaluation results for key metrics, 
including accuracy, number of events recognized, the effect 
of directional data, performance across classes, and compar-
isons against baseline models. 
Accuracy & Accept Rate 
Figures 5 depicts our system’s accuracy over time. On the 
real-world dataset, our system achieved F1 scores of 0.59, 
0.84, and 0.88 (for the Relaxed, Balanced, and Conservative 
settings, respectively) between accepted samples. Specific to 
the real-world dataset, the apartment kitchen environment 
achieved the highest accuracy after the one-week period 
(F1accept=1.0). Both the Balanced and Conservative settings 
achieved F1accept scores of 1.0, with accept rates of 0.39 and 
0.16, respectively. The lowest accuracy on the real-world da-
taset occurred in the apartment bathroom using the Relaxed 
setting (F1accept=0.42 and raccept=0.73). 

The accept rates for our various hyperparameters remained 
consistent with their tuned behaviors. On the real-world da-
taset, our system reached accept rates of 0.66, 0.38, and 0.20 
(for the Relaxed, Balanced, and Conservative settings, re-
spectively). The Relaxed setting run on the apartment 
kitchen environment achieved a 0.85 accept rate with a F1 
score of 0.64. On the other hand, the apartment bathroom en-
vironment had the lowest accept rate on the Conservative set-
ting (F1accept=1.0, raccept=0.03). At the dataset level, the high-
est accept rate was reached by the Relaxed setting on Ur-
banSound8K (0.67), while the Conservative setting for the 
same dataset had the lowest rate (0.16). 

We observed key trends with our system’s performance over 
time. In general, the addition of more audio samples led to 
higher accuracy, due to the ability to form larger clusters and 
thus train more robust classifiers. Occasionally, novel outlier 
events caused accuracy to temporarily decrease (e.g., 4th day 
of ESC-10, 13th day of UrbanSound8K), but the system 
learns and accommodates this quickly. In all tested datasets, 



  

there is a convergence point at which processing more data 
does not lead to significant improvements in either accuracy 
or accept rate.  
 Baseline Comparisons  
To further contextualize the accuracy of our system, we also 
compared its performance against two baselines imple-
mented using Scikit-Learn [52]. We selected two standard 
clustering algorithms for comparison: a soft-labelling clus-
tering algorithm (GMM with full covariance) and a hard-la-
belling clustering algorithm (K-Means). The number of clus-
ters for both algorithms were chosen by maximizing an ob-
jective score using brute-force search from 1 to 42 clusters 
(i.e., the average number of clusters from our in-the-wild 
data collection). The objective score of the GMM was the 
Bayesian Information Criterion (BIC), and the objective 
score of the K-Means algorithm was the gap statistic [71]. 
Other parameters were left at default values, and we found 
that varying them did not lead to significant changes.  

In comparing Listen Learner’s performance to baseline clus-
tering algorithms, we considered different types of errors and 
performance tradeoffs. The results of our experiments are 
shown in Table 3. Note that unlike the F1accept metric, which 
is computed only for discovered classes, we computed Pre-
cision and Recall for all samples by grouping non-discovered 
classes in an “Other” category. In general, Listen Learner’s 
classification accuracy for discovered classes is higher than 
or equal to either of the baselines, with a caveat that our sys-
tem may not discover all classes automatically. From a prac-
tical standpoint, we believe that fewer, more reliable classi-
fiers are more useful for HAR applications, especially for 
end-users. In our future work section, we discuss methods 
for incorporating explicit user input in the class discovery 
process. Figure 6 shows each algorithm’s confusion matrix 
for the Apartment Kitchen environment, where all three al-
gorithms performed relatively well (Table 3). Listen Learner 

achieves high Precision by ignoring samples with lower con-
fidence, which is consistent with its lower Recall (Table 3). 
We believe this is acceptable for our use-case, as human ac-
tivity is generally sustained across several windows. 
Effect of Sound Direction  
The use of our own sensing hardware for collecting a real-
world dataset allowed us to integrate sound directionality in-
formation for identifying and classifying objects of interest. 
Figure 7 shows the distribution of the direction information 
for four classes in our data. In some cases, directionality in-
formation can be helpful in the recognition of stationary ob-
jects (e.g., Figure 7A). However, there are also cases where 
directional information does not form clean clusters, even for 
stationary objects (e.g., Figure 7, C & D), which we hypoth-
esize is due to multipath and poor autocorrelation with white-
noise-esque signals (e.g., running faucet).  

Table 3. Baseline comparison across 10 randomized cluster 
assignments. We show the mean macro-averaged Precision 

(P), Recall (R), and number of classes (C) discovered by Lis-
ten Learner. Standard deviations are shown in parentheses. 

Room Baseline 
(GMM) 

Baseline 
(K-Means) 

Listen Learner 
(Balanced setting) 

 P R P R C P R 

ESC-10 0.10 
(0.03) 

0.12  
(0.01) 

0.70  
(0.07) 

0.52  
(0.03) 6.0/10 0.83 

(0.06) 
0.33  

(0.01) 

U8K 0.19  
(0.05) 

0.23  
(0.02) 

0.47  
(0.06) 

0.40  
(0.03) 7.9/10 0.68 

(0.02) 
0.33  

(0.04) 

Apt. Bath. 0.23  
(0.05) 

0.37  
(0.06) 

0.82  
(0.05) 

0.58  
(0.02) 5.0/7 0.85 

(0.02) 
0.58  

(0.02) 

Apt. Kitchen 0.69  
(0.09) 

0.60  
(0.06) 

0.82  
(0.02) 

0.65  
(0.01) 3.0/6 0.97 

(0.00) 
0.87  

(0.00) 

Bathroom 0.24  
(0.11) 

0.37  
(0.11) 

0.81  
(0.04) 

0.50  
(0.03) 2.7/5 0.70 

(0.10) 
0.56  

(0.22) 

Fab. Wksh. 0.80  
(0.07) 

0.82  
(0.04) 

0.92  
(0.02) 

0.76  
(0.02) 5.0/7 0.85 

(0.00) 
0.61  

(0.00) 

Elec. Wksh. 0.35  
(0.06) 

0.44  
(0.06) 

0.84  
(0.03) 

0.71  
(0.03) 2.0/7 0.87 

(0.03) 
0.79  

(0.04) 

Office 0.53  
(0.13) 

0.60  
(0.10) 

0.91  
(0.01) 

0.75  
(0.01) 1.0/5 0.95 

(0.00) 
0.96  

(0.00) 

 

 
Figure 5. Evaluation results from offline and real-world datasets for the Balanced setting.  

This chart plots our performance metrics over days of learning. 



  

Overall, we found that the inclusion of directionality infor-
mation does not increase classification accuracy (p=0.47) or 
accept rate (p=0.59). However, in some rooms (bathroom), 
the inclusion of direction can lead to increases in F1 score of 
up to +0.16. We hypothesize that many of our tested audio 
classes in that particular environment (e.g. faucet, urinal, toi-
let) produced similar sounds which were more easily differ-
entiated using directional information.  

Another assumption of using directionality information is 
that the position and orientation of the recording device does 
not change overtime. Our data collection procedure made 
this assumption and approximated a smart speaker whose lo-
cation remained unchanged throughout data collection. In the 
future, using IMUs integrated in some consumer smart 
speakers (such as the Apple HomePod [5]), movement could 
be detected and trigger the system to recalibrate. 
INTERACTION STRATEGIES 
In our initial pilots, we explored “digest”-style labeling strat-
egies, in which clips were replayed to users before a label 
was solicited. However, this required storing raw audio, 
which carries a significantly privacy cost. Thus, we focused 
on in situ labeling instead. While the primary mode of inter-
action we have discussed so far requires users to respond to 
open-ended queries (e.g., “what was that sound?”), there are 
other approaches for eliciting user input to label, confirm, 
and disambiguate classes.  

One such approach is to use a pre-trained model to assign 
initial labels to clusters, and users are instead asked for a con-
firmation (e.g., “was that a microwave?”). This interaction 

can also be used to confirm previous labels and perform cor-
rections if needed. Likewise, when a sound event falls within 
an ambiguous cluster boundary, the system can ask a disam-
biguation query (e.g., “was that a microwave or a faucet?”). 
Such techniques can streamline the labeling process and ver-
ify the correctness of a labelled classifier. 
Interaction Study 
We sought to explore and quantify several interaction strate-
gies enabled by our system (i.e., open-ended, confirmatory, 
and refinement; Figure 8) through a follow-up study. We 
were particularly interested in 1) how each interaction mo-
dality was perceived by users, and 2) the corresponding ac-
curacies of the resulting labels. 

For this, we ran a user study with 12 participants (6M/6F, 
ages 21-35, average age 26.8, seven native English speak-
ers). We selected five portable items (handheld sander, 
pitcher of water, hairdryer, fan, and hammer) from rooms 
used to create our real-world dataset (Apt. Bathroom, Apt. 
Kitchen, Wood Workshop., Electronics Workshop). For each 
item, we extracted the corresponding un-labelled classifier 
generated from our evaluation and used it to preload the sys-
tem. We distributed the items around the study room and la-
belled them with numbers. We informed participants that 
their job was to “teach the smart speaker about what was 
going on around it.”  

In each round of data collection, we programmed our system 
to ask participants one of the three query types: open-ended, 
confirmatory, or refinement. For refinement queries, our sys-
tem made a best guess and then randomly selected a second 
class. Upon the prompt, participants were told to stop their 
current activity, respond to the query, and then continue. To 
investigate the “annoyance” of each interaction type, we also 
varied query frequency as a second condition. When the sys-
tem recognized an audio event the probability (10%, 50%, or 
90%) that a query would be presented. With 3 query types 
and 3 query frequencies, there were 9 rounds in total (ran-
domized order). Within each round, participants used all five 
items for 20 seconds each, in a random order. Following each 
round, participants filled out a raw NASA TLX assessment. 

 
Figure 7. Audio direction of example classes: coffee grinder 

(A), speech (B), faucet (C), and refrigerator door. The center 
dot represents the placement of the sensing device.  

 
Figure 6. Visualization of the different sources of error for GMM (left), K-Means (center), and Listen Learner (right) in the Apart-
ment Kitchen environment. True labels are listed on the y-axis and predicted labels are on the x-axis. Note Listen Learner contains 
fewer classes because classes below a confidence threshold are ignored. The “other” category consists of classes not yet discovered 

by Listen Learner, which are ignored. 



  

At the end of all nine rounds, we conducted an exit interview 
asking participants about their experience with our system.  
Results 
The results of our study are shown in Tables 4 and 5. We 
were primarily interested in the effect different interactions 
had on our system accuracy and how users perceived our sys-
tem. Thus, our metrics included Assignment Accuracy (i.e., 
portion of classes correctly labeled at the end of each session) 
and user feedback. While we asked users to fill out all six 
scales of a Raw NASA TLX assessment, we found that most 
scales had little variation, and so we report only the Frustra-
tion scale which had the highest variance. We believe this 
measure to be a reasonable proxy for annoyance and intru-
siveness. We conducted statistical analysis of our results us-
ing Bonferroni-corrected unpaired t-tests.  
At the end of each session (i.e., one round of using each 
item), around 90% of classes were correctly labeled by Lis-
ten Learner. This confirms that relatively low recall is ac-
ceptable for our use-case, as human activity is generally sus-
tained. Altering the query frequency and type did not affect 
this in a statistically significant way. This is encouraging be-
cause it suggests that users can be queried relatively infre-
quently while still offering high accuracies.  

As expected, participants became more frustrated with the 
system when it asked more questions, though this was also 
was not statistically significant. In terms of utterance dura-
tion, Confirmatory queries had the shortest responses (𝑀& =
1.51, 𝜎& = 1.21) compared to refinement (p<0.01, T=5.7) 

and open-ended queries (p<0.01, T=11.2). Refinement que-
ries produced the second shortest responses ( 𝑀, =
2.27, 𝜎, = 1.33), and Open-ended queries resulted in the 
longest responses (𝑀- = 2.81, 𝜎- = 1.57). Query type did 
not have a statistically significant impact on Assignment Ac-
curacy or TLX Frustration, though we note on average re-
finement queries resulted in the least frustration.  

Interestingly, when interviewed, participants gave different 
preferences. When asked to rank their preference of the dif-
ferent query types, 9 out of 12 participants said they preferred 
confirmation-style questions, noting it was “easier to an-
swer” (P2, P4, P9). Compared to refinement questions, par-
ticipants noted that confirmatory questions were preferred 
due to shorter questions, which were seen as requiring less 
mental effort to hear correctly and remember (P2, P5). An-
other factor was that since the second label for refinement 
questions was randomly chosen for this study, participants 
felt “discouraged when both the guesses were wrong” (P1, 
P4). Only one participant (P10) ranked refinement questions 
above confirmatory questions, commenting “I liked the com-
parisons because I knew exactly which inputs [the agent] ex-
pects”, which echoed his complaint that “the [agent] doesn’t 
always understand me." Most users (10/12) became annoyed 
when the system asked too many open-ended questions, not-
ing that the interaction became “repetitive, like a 2 year old” 
(P12). Nevertheless, one participant (P8) maintained that an-
swering open-ended queries was easier because “I don’t have 
to think about the question, I just say what I’m doing”. Over-
all, participants preferred to have at most one or two open-
ended questions per class followed by another type of query 
for any follow-ups. 

Participants were also asked about their preference of ques-
tion frequency, and almost all (11/12) participants preferred 
that a virtual assistant ask as infrequently as possible. Still, 
many offered situations where they found it acceptable for 
more frequent interactions. P4 noted that if he purchased a 
device with a contextually-aware agent, he expects the agent 
“to work out of the box for core stuff… I’m not here to teach 
the [agent] how to do its job…” but added “for things specific 
to my life, I would be ok with answering questions.” Some 

Table 4. Metrics by trigger probability, query frequency, as-
signment accuracy (portion of correctly labeled classes), and 

TLX Frustration. 

Trigg. Prob. Follow-ups/min Assign. Acc. TLX (Frus.) 
10% 3.63 0.88 (s=0.16) 5.31 (s=4.30) 
50% 6.20 0.93 (s=0.12) 5.39 (s=4.16) 
90% 7.20 0.88 (s=0.13) 6.67 (s=5.23) 

 

Table 5. Metrics by query type, response length in # of words, 
assignment accuracy, and TLX Frustration. 

Query Type Resp. Length Assign. Acc. TLX (Frus.) 
Open-ended 2.81 0.88 (s=0.14) 6.81 (s=5.31) 
Confirmatory 1.51 0.94 (s=0.09) 5.43 (s=4.47) 
Refinement 2.27 0.87 (s=0.16) 5.17 (s=4.03) 

 
 

 
Figure 8. Interaction implications made possible through Lis-
ten Learner. We show examples of open-ended (top). confirm-

atory (middle), and refinement queries (bottom). 



  

participants also saw certain types of queries (e.g., confirma-
tion questions) as a type of feedback, which would be bene-
ficial for certain agent-controlled tasks, such as locking the 
door (e.g., “did you just go outside? I’ll lock the door”) when 
leaving the house (P8). Finally, other participants noted that 
their willingness to respond to queries depended on the inter-
ruption cost of their current activity (P2, P3, P5) – “If I was 
hammering, then I wouldn’t mind stopping, but having to 
stop the hairdryer and turn it back on was annoying” (P3). 
When asked to give a rough threshold of how many times 
they would be willing to be interrupted by an agent, re-
sponses ranged from 1 to 2 times per minute of performing 
the activity (P2, P7) to once an hour (P5, P12). 
LIMITATIONS AND FUTURE WORK 
The biggest limitation of Listen Learner is its inability to ex-
plicitly include classes of interest, and the high computa-
tional cost of model training (relative to traditional ap-
proaches). We speculate that accuracy could be improved 
with better embeddings (e.g., using ResNet instead of VGG) 
or improved settings (i.e., higher sampling rates). It is also 
possible to incorporate algorithmic changes that support 
learning through directed examples. Likewise, while our 
computational cost is relatively high, our algorithm does not 
need to be run in real-time and can be scheduled to run peri-
odically (e.g., run overnight to process the day’s data). 

Currently, our system is able to detect simultaneous events 
during inference, assuming instead that events are segmented 
and non-overlapping during training. However, in a real 
world setting, it is common for multiple events to occur sim-
ultaneously, making it difficult to segment audio based on 
our current adaptive amplitude threshold. We intend to in-
vestigate classical [11] and deep-learning based [27][31] au-
dio separation (blind signal separation) techniques to further 
increase the efficacy of our algorithm. While these tech-
niques have traditionally been applied to speech, they could 
be adapted to great benefit in this domain. In addition, other 
methods of clustering and classification can be used to better 
support the consideration of user-provided examples. 

Finally, sensor fusion approaches are possible. Our evalua-
tions show that our current hardware’s sound directional in-
formation does not significantly improve event clustering; 
however, this information may be useful for sound isolation 
using beamforming techniques [18]. In addition, other sens-
ing hardware (e.g., motion, vibration, temperature) could 
also complement audio input to expand the set of activities 
accessible to Listen Learner. 
EXAMPLE APPLICATIONS 
We believe that the capabilities enabled by Listen Learner 
can serve as a foundation to enable many context-driven in-
teractive experiences. In this section, we briefly describe sev-
eral illustrative applications we implemented. 

Wearables and Health. We built a smartwatch application 
that performs cross-modal learning of both acoustic and mo-
tion (e.g., IMU) information. Acoustic data streams are clus-
tered using Listen Learner. Semantic labels from acoustic 

data are used to segment and train motion models. This 
multi-modal training scheme can then be used to extract e.g., 
a user’s health habits. 

Home and Accessibility. We built a smart speaker application 
that leverages Listen Learner to label acoustic events to aid 
accessibility in the home. For example, the system can ask a 
confirmatory query: “was that a doorbell?”, in which the user 
responds with a “yes.” Once a label is established, the system 
can offer push notifications and other actions whenever the 
event happens again. This interaction links both physical and 
digital domains, enabling experiences that could be valuable 
for users who are e.g., hard of hearing. 

Workflow Optimization. We built a desktop application 
plugin that clusters offline audio streams (e.g., podcasts, or 
field recordings) and prompts the user for labels. Once a la-
bel is provided, it is propagated across the entire audio stream. 
This workflow is a useful first-pass for tasks that involve au-
dio annotation of extremely long recordings (e.g., WildDol-
phinProject.org, GreatElephantCensus.com, which requires 
finding animal sounds from 100+ hours of field recordings). 
CONCLUSION 
We have presented Listen Learner, a system that seeks to en-
able high-accuracy, low-effort acoustic activity recognition 
using one-shot user labeling. We built a hardware and soft-
ware implementation that gradually discovers new event 
classes from the environment with no user demonstration or 
training involved. We designed our system to support a tun-
able parameter that prioritizes either the number of discov-
ered classes or the model’s classification accuracy, and we 
evaluated each setting on two downloaded datasets and one 
real-world dataset collected using our own hardware. We 
also conducted a user interaction study that explored several 
approaches to user labeling. Our results show that Listen 
Learner provides accuracy levels suitable for common activ-
ity recognition use-cases and can augment or complement 
existing methods, bringing the vision of context-aware inter-
actions closer to reality. 
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