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ABSTRACT
Advances in artificial intelligence and in particular machine learn-
ing and neural networks have given rise to a new generation of
virtual assistants and chatbots. Within this work, we present NA-
DiA - Neurally Animated Dialog Agent - that leverages both the
user’s verbal input as well as their facial expressions to respond
in a meaningful way. NADiA combines a neural language model
that generates appropriate responses to user prompts, a convolu-
tional neural network for facial expression analysis, and virtual
human technology that is deployed on a mobile phone. Here, we
evaluate NADiA’s anthropomorphic characteristics and its ability
to understand the human interlocutor using both subjective as well
as objective measures. We find that NADiA significantly outper-
forms state of the art chatbot technology and produces comparable
behavior to human generated reference outputs.
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1 INTRODUCTION
Conversational technologies integrated in products such as Apple’s
Siri, Google Home, and Amazon’s Alexa have made their way into
people’s everyday lives. Due to advances in artificial intelligence,
natural language processing, and the increased availability of cloud
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computing platforms, technologies, conversational agents can be ef-
fectively used for complex tasks such as cognitive behavior therapy,
entertainment, and medicine.

In contrast to conversational agents that rely mostly on text
or language based technologies, human face-to-face communica-
tion relies on additional communicative modalities or channels,
including facial expressions, paralinguistic aspects of the voice (e.g.,
prosody or voice quality), as well as gestures. To accommodate this,
researchers have recently focused on multimodal conversational
interfaces. These interfaces known as Embodied Conversational
Agents (ECA), or virtual agents [6], typically consist of anthropo-
morphic representations of a human and use natural communicative
modalities, such as natural language and nonverbal behavior (e.g.,
gestures, facial expressions, postures), to interact with users.

The conversational agent architecture proposed in this work,
NADiA, relies on neural network research shown to provide state-
of-the-art behavior understanding, recognition, and generation. In
addition, a key motivation of using neural networks for NADiA is
the limited computational power needed for deployment, allowing
the system to deliver high precision and state of the art performance
in low resource environments such as mobile phones or embedded
robotic systems. In our work, NADiA was tested and developed
on a Samsung Galaxy 7 mobile phone 1. We take full advantage of
mobile phone hardware to deliver a multi-modal conversational
interaction by leveraging the microphone for the automatic speech
recognition and camera for the facial expression analysis and facial
expression mimicry.

We combine and evaluate three main technologies, (1) a neural
language model to generate meaningful responses to human user
prompts, (2) a CNN (Convolutional Neural Network) to recognize
and react to user’s affective state, and (3) virtual agent software
to deliver the responses in an anthropomorphic fashion, in order
to improve the experience of the human user. We conduct a series
of subjective and objective experiments to provide evidence that
NADiA can improve conversational agent interactions. Specifically,
we investigate three main research questions:
RQ1 - Is it possible to train a neural network based unscripted

virtual character that is able to sustain brief smalltalk inter-
actions and create the appearance that the virtual character
understands its interlocutor?

1The stimuli for the human perception tests were rendered from the mobile phone
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RQ2 - How anthropomorphic is the appearance of the virtual
characters to human judges, and what is the influence of the
model that generates the responses?

RQ3 - What additional benefit is gained from the facial expression
mimicry of the virtual character that is enabled through an
end-to-end convolutional neural network approach?

The remainder of the paper is organized as follows: First, Section
2 introduces some of the related work with respect to natural lan-
guage generation for conversational agents as well as the impact
of behavior mimicry of agents on their human interlocutors. Then,
Section 3 introduces and describes the main components of the
NADiA architecture that is deployed on a mobile device. Section 4
details the experimental setup of our subjective and objective eval-
uations, and Section 5 details the main findings of our experiments.
Section 6 discusses the main findings with respect to our research
questions RQ1-3, and lastly Section 7 concludes the paper.

2 RELATEDWORK
2.1 Natural Language Generation for

Conversational Agents
Early research in creating believable conversational agents were
largely motivated by the Imitation Game (also known as the Turing
Test), proposed by Alan Turing in 1950. To maintain grammati-
cal correctness and produce logical responses, early conversational
agents, known as chatterbots, relied mostly on programmer-defined
pattern matching, conversational networks, and activation net-
works, which sometimes were able to obtain limited success in
restricted Turing Test evaluations [22]. ALICE (Artificial Linguis-
tic Internet Computer Entity) introduced a new markup language
for programmer-defined conversation knowledge and responses
called AIML (Artifical Intelligence Markup Language) supporting
XML definitions of categories, patterns, and templates [28]. Cur-
rent commercially-available chatbot software such as Cleverbot
utilize similar approaches to rule-based conversation generation,
augmented with mechanisms for learning new response patterns
from conversations.

More recently, the focus of conversational research has shifted
away from solely generating convincing dialog and towards the cre-
ation of functional natural language interfaces and conversational
modeling.

Recent work has shown that neural language models and re-
current sequence-to-sequence models are able to encode limited
conversational context a viable approach to language modeling
with a large, unstructured corpus [27].

To facilitate more realistic responses, other cues such as affect
and contextual understanding can be used during response genera-
tion. Conversational models that encode affective signals such as
user satisfaction and emotional state have shown to be effective for
more believable conversational agents and low-perplexity language
models [12, 14].

2.2 Virtual Agent Models and Facial Mimicry
Virtual agents that can take on many roles have been used in many
application domains and for many purposes, such as promoting
healthy exercise in older adults [4], rehearsing job interviews with

Figure 1: NADiA Architecture Diagram

a virtual recruiter [8] or screening for depressive disorders [10].
Endowing virtual agents with certain behavioral capabilities can
allow them to be more engaging and likable. One of these abilities
that was investigated in the context of virtual agents is mimicry
which can increase liking and rapport between individuals.

Experimental studies on the perception of emotion-mimicking
virtual agents found that participants reported greater amounts
of positivity, warmth, and realism in the presence of smiles while
feeling more at ease and well-understood [3, 19, 25].

While prior work showed the positive effects of emotional mir-
roring virtual agents, these existing models of virtual agents’ facial
mimicry relied on facial recognition and facial animation technolo-
gies with a large delay between the processing of the visual feed,
facial behavior recognition, and production of facial mimicry [3, 19].
By leveraging neural networks, we aim to prioritize fast inference
speed to support real-time or near real-time feedback.

3 NADIA ARCHITECTURE
The NADiA architecture consists of three main parts: (1) NADiA’s
ability to generate natural language is based on a novel neural
languagemodel namedAffect-LM [14]. (2) NADiA is further capable
of mimicking the human user’s facial expressions. This capability
is enabled through a convolutional neural network that detects the
user’s face and analyzes his/her facial expressions and renders the
same expression on NADiA’s virtual face. (3) The appearance of
NADiA is enabled through the use of the Smartbody architecture
[24]. Overall NADiA is deployed on a mobile phone and is able
to respond to human user prompts in near realtime. An overview
of the architecture is provided in Figure 1 the following section
describes each component in detail.

3.1 Affect-LM Text Generation Model
To generate NADiA’s responses to human user’s prompts, we lever-
age a novel language model Affect-LM [14]. Affect-LM is capable of
generating affective conversational text by inferring the affective
context from the conversation history.
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Affect-LM was trained on a large conversational corpus, namely
the Fisher dataset [9]. This dataset consists of speech from dyadic
telephonic conversations of 10minutes each, alongwith their associ-
ated transcripts. We leverage this corpus both for training of neural
language model Affect-LM, as well as the evaluation of NADiA.

3.2 Facial Mimicry CNN
The facial expression CNN extracts the activations of 18 Action
Units (AUs) as defined by the Facial Action Coding System (FACS)
from the front-facing smartphone camera. These AUs can be used
to infer the user’s affective state, serve as an input parameter to
Affect-LM, and provide facial mimicry.

A histogram-of-oriented-gradients (HOG) object detector is used
to provide cropped facial images to the CNN [18].

The facial expression CNNwas trained using two freely available
datasets of video and multi-media content, the UvA-NEMO Smile
Database and the Ryerson Audio-Visual Database of Emotional
Speech and Song (RAVDESS) [11] [20], which were both labeled
using an open source facial behavior analysis tookit [1].

The CNN architecture consisted of three layers, each consist-
ing of a two-dimensional convolutional layer, and a stage of max
pooling with a ReLU (Rectified Linear Unit) activation layer. Simi-
lar to [15], a multi-label cross entropy loss was used for training,
along with an RMSProp optimizer [26] and for 200 epochs. This
configuration is similar to several state-of-the-art neural network
architectures for object recognition and emotion/AU detection [16].

3.3 Smartbody Mobile Integration
Smartbody is an open-source project written in portable C++ and is
usable on many different platforms, including Android. The behav-
ior generation commands for NADiA are Smartbody scripts that
communicate via Behavior Markup Language (BML), a language for
describing verbal and non-verbal character animation behaviors.

Both neural network architectures communicate with the Smart-
body library to animate the character’s speech and expression.
NADiA runs on a Samsung Galaxy S7 device with a Qualcomm
Snapdragon 820 64-bit quad-core CPU and 4GB of RAM. The facial
mimicry inference takes a total of around 200-300 milliseconds.

4 EXPERIMENTAL SETUP
In this section, we describe the experimental setup of our study. Our
study was constructed using a 3x3 study design that comprises two
independent variables (IVs) that are evaluated as our main effects.

The first IV is the source of the dialog (i.e., Affect-LM, Cleverbot,
and Fisher Reference). Affect-LM represents our proposed neural
language model, Cleverbot is a commonly used online accessible
chatbot2, and Fisher Reference refers to the actual conversation as
it was recorded for the Fisher dataset. The second IV represents
the type of appearance used for stimuli presentation (i.e., Audio
Only, No Mirroring, and Mirroring). In the Audio Only condition
the dialogs are presented using a static visual representation of
NADiA (i.e., a screenshot of the virtual character). For both No
Mirroring and Mirroring conditions NADiA is presented as a video
stimulus and NADiA’s lips are moving while she is speaking. For
the Mirroring condition NADiA additionally attempts to mirror
2http://www.cleverbot.com/

the facial expressions of the human interlocutor using the CNN
described in Section 3.2.

We evaluate our research questionsRQ1-3, introduced in Section
1, using both subjective evaluations enabled through an extensive
study on the crowd-sourcing platform Amazon Mechanical Turk as
well as the BLEU score, which has previously been used to evaluate
similarity between human and artificial machine translation.

4.1 Subjective Evaluation - Perception Study
Our evaluation aimed at assessing our virtual agent model on sev-
eral aspects. The following categories, hence, serve as our depen-
dent variable (DVs): (a) how realistic or believable the virtual agent’s
behavior seems to subjects, both in terms of the generated text and
facial expressions; (b) how enjoyable subjects think it would be
to interact with the virtual agent; and (c) how generally easy to
use the virtual agent seems to be. To that end, we re-used the
evaluation scheme proposed by Lisetti et al. [19], which is based
on a combination of scales from Heerink’s model [17] and Bart-
neck’s “Godspeed questionnaire” [2]. Specifically, these scales were
originally designed for evaluating robots and artificial agents on
a number of dimensions, including anthropomorphism, perceived
enjoyment and perceived ease of use. In addition to these questions,
we seek to evaluate how well the system can understand the human
interlocutor and added one additional item to the perception study
that evaluates the subjective perception of understanding between
the human and artificial interlocutors. Every item was evaluated
on a 7 point Likert-scale.

For our perception study, we leverage Amazon’s Mechanical
Turk (MTurk) platform. The MTurk platform has been successfully
used in the past for a wide range of perception experiments and has
been shown to be an excellent resource to collect human ratings
for large studies [5]. Each stimuli was evaluated by eight human
raters that have a minimum approval rating of 98% and are located
in the United States. The human raters were instructed that the con-
versations should be considered to be taken from a conversational
rather than a written context: repetitions and pause fillers (e.g., um,
uh) are common and no punctuation is provided. The human raters
were paid 0.30USD per stimulus. As each stimulus was about 45
seconds in length and required evaluating 8 items using a Likert
scale items. The average evaluation time was expected to be around
2 minutes. We observed that a small number of raters (N = 6) took
more than 10 minutes to evaluate the stimuli and we considered
them as distracted and hence removed them from the subsequent
analyses. We kept the MTurk study active for five days and received
a total of 330 responses. After removing the distracted raters, we
have access to 324 valid ratings.

We conducted initial ANOVAs, with human ratings for the per-
ception scales as our DVs and dialog source and type of appearance
as the two IVs. When we observe significant main effects in the
ANOVAs, we conducted follow-up t-tests to identify which condi-
tions are responsible for the observed effects.

4.1.1 Stimuli Generation. Specifically, we generated 45 stimuli3
to form a comprehensive dataset for the tested IVs. These IVs are

3Links for the generated stimuli are available at: https://goo.gl/JHcm8P
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the source of dialog and type of appearance used for stimuli pre-
sentation. For each configuration, 5 stimuli are generated using a
set of corresponding starting prompts.

(1) What do you think is the most important thing to look for in a
life partner?

(2) Would you commit perjury for a friend or family member?
(3) What do you think about computers in education?
(4) What is your favorite holiday?
(5) Do you like to cook?

To ensure that there are adequate examples of reference responses,
these starting prompts are chosen according to the Fisher corpus
description file, containing a list of topics of conversation in the
dataset. While the fact that the conversation topics were taken from
the Fisher dataset may give Affect-LM (trained on the Fisher dataset)
an implicit advantage over Cleverbot, the topics were purposely
chosen to be as generic as possible to maximize the probability that
it also exists in Cleverbot’s response database.

The 5 starting prompts are used to provide consistent starting
conditions for the 3 sources of dialog. Following the initial prompt,
the interaction is allowed to continue naturally between a human
and the dialog source for amaximumof 8 dialog turns. The conversa-
tion between the human and each chatbot is recorded in individual
transcript files.

The transcripts are used to recreate the conversation dialog for
the 3 types of appearance, which include both multi-modal and
audio-only stimuli. The multi-modal stimuli are generated by cap-
turing the video and audio output of the NADiA conversation appli-
cation running on a mobile phone while the audio-only stimuli are
generated by combining the audio output with a screenshot of the
NADiA virtual human. The virtual human’s facial mimicry is con-
trolled by enabling or disabling the facial expression CNN. While
participants are not able to fully appreciated the facial mimicry
aspect of the conversational interaction, we posit that the human
interlocutor’s emotional expression is reasonable representation of
the conversational responses, and the relatively short duration of
the conversation limits the variance of possible affect states. The
application supports dynamic response generation using various
dialog sources, but the virtual human’s responses are manually set
according to the pre-generated transcript responses during stimuli
generation for the purposes of consistency and reproducibility due
to the non-deterministic nature of the chatbots.

4.2 Objective Evaluation - BLEU Score
Evaluation

To complement the subjective evaluations (cf. Section 4.1) we eval-
uate the similarity between the automatically generated responses
of Cleverbot and Affect-LM and the reference responses gathered
from the actual conversations that were recorded in the Fisher
dataset. Due to the nature of the chosen conversation topics, the
reference responses are generic and represent common responses
in the course of natural conversation. In particular, we leverage
the BLEU score that is traditionally used to assess the quality of
machine translation for this purpose [23]. As BLEU was originally
designed for document-level translation, smoothing function 1 de-
scribed by Chen and Cherry is applied during evaluation [7].

Figure 2: Human rater scores on seven-point Likert-scale
with respect to whether the artificial interlocutor under-
stands the human speaker. Significant differences as iden-
tified by follow-up t-tests is indicated with ∗∗∗ for p < 0.001
and ∗ for p < 0.05.

We conducted an unpaired t-test to evaluate if the generated
responses of Affect-LM or Cleverbot were closer to reference re-
sponses observed in the Fisher dataset.

5 RESULTS
5.1 RQ1 - Understands Interlocutor
For our first research question RQ1, we investigated whether the
human raters evaluate NADiA’s ability to understand the human
interlocutor differently from the reference conversation that was
recorded in the Fisher dataset and the Cleverbot baseline. The re-
peated measures ANOVA revealed a significant main effect for
source of dialog (i.e., Affect-LM vs. Cleverbot vs. Fisher Reference;
F(2, 36) = 14.682, p < 0.001, η2 = 0.449). As expected, no significant
effect formedia type (i.e., Audio only vs. NoMirroring vs. Mirroring)
was observed. Neither did we observe a significant interaction be-
tween the two IVs. Follow-up t-tests revealed that Fisher Reference
(M = 4.980, SD = 0.53) significantly outperformed both Affect-LM
(M = 4.40, SD = 0.282; t(200) = 2.525, p = 0.01) and Cleverbot (M =
3.80, SD = 0.411; t(197) = 4.828, p < 0.001). In addition, we observed
a significant difference between Affect-LM and Cleverbot (t(197) =
-2.244, p = 0.026). Figure 2 summarizes the observed differences in
perceived understanding.

Complementary to the perceptual experiments on MTurk, we
conducted an objective evaluation of the similarity between the
Fisher Reference sentences and the dialog sources Affect-LM and
Cleverbot. For this purpose we leveraged BLEU score [23]. The
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Figure 3: BLEU score comparison between dialog sources
Affect-LM and Cleverbot. Both sources are compared to the
Fisher Reference. Higher scores reflect increased similarity
with Fisher Reference. Significant differences as identified
with pairwise t-test is indicated with ∗∗ for p < 0.01.

t-test revealed that there is a significant difference between the
BLEU score of Affect-LM (M = 0.226 , SD = 0.236) and Cleverbot
(M = 0.077, SD = 0.076; t(29) = 3.277, p < 0.01), which signifies that
the generated responses of Affect-LM were significantly closer to
the Fisher Reference than those generated by Cleverbot. The result
is summarized in Figure 3.

5.2 RQ2 - Perceived Anthropomorphism
With respect to our second research question RQ2 we observe the
following: The repeated measures ANOVA revealed both a main
effect for dialog source (F(2, 36) = 3.314, p < 0.05, η2 = 0.155) and a
main effect for media (F(2, 36) = 5.877, η2 = 0.246). No significant
interaction between the IVs was observed. Follow-up t-tests for
dialog source, revealed that Fisher Reference (M = 3.877, SD =
0.283) was perceived as significantly more anthropomorphic than
Cleverbot (M = 3.362, SD = 0.346; t(202) = 2.01, p < 0.05). There was
no significant difference observed between Fisher Reference and
Affect-LM (M = 3.425, SD = 0.233; p > 0.05), nor between Affect-LM
and Cleverbot.

With respect to the type of media we observed a significant
difference between the Audio Only (M = 15.636, SD = 1.709) and
both Mirroring (M = 18.443, SD = 0.352; t(202) = -2.223, p < 0.05)
as well as No Mirroring (M = 19.284, SD = 1.826; t(199) = -2.880, p
< 0.01) conditions. No significant difference was observed between
Mirroring and No Mirroring.

5.3 RQ3 - Pleasant Conversation Partner
We evaluate the perceived pleasantness of the conversation partner
(textbfRQ3) by evaluating two ratings. First, the repeated measures
ANOVA for the perceived pleasantness of the conversation partner
revealed a main effect of dialog source (F(2, 36) = 4.355, p < 0.05,η2 =
0.195). No other effects were observed. Follow-up t-tests reveal that
there is a significant difference in perceived pleasantness between
the Fisher Reference (M = 4.720, SD = 0.358) and Cleverbot (M =
4.098, SD = 0.269; t(196) = 2.453, p < 0.05). No significant difference
was observed between Affect-LM (M = 4.271, SD = 0.214) and either
Fisher Reference or Cleverbot.

Second, the repeated measures ANOVA for the “nice” character-
istic of the conversation partner revealed a main effect for type of
media (F(2, 36) = 3.430, p < 0.05, η2 = 0.160). No other effects were
observed. Follow-up t-tests revealed that the Mirroring condition
(M = 5.128, SD = 0.157) was perceived significantly nicer than the
Audio Only condition (M = 4.667, SD = 0.088; t(196) = -2.26, p <
0.05). No significant differences were observed with respect to the
No Mirroring condition (M = 4.878, SD = 0.272).

6 DISCUSSION
Here, we summarize and discuss the results reported in Section 5
with respect to our research questions RQ1-3.

6.1 RQ1 - Understands Interlocutor
Out first research question is concerned with the ability of the
conversational agent to sustain believable human conversation.
We observe (cf. Section 5.1) that the dialog source Affect-LM was
perceived to be significantly more understanding than Cleverbot.
As expected, both artificial approaches are outperformed by the
reference human response in the Fisher corpus, albeit only by one
point on the Likert-scale in the case of Affect-LM. It is expected
that when evaluated in longer conversations, Affect-LM’s perceived
realism will suffer due to its inability to store long-term context
and generate consistent responses (due to softmax sampling).

The encouraging results from the subjective evaluation are fur-
ther supported by a significantly higher BLEU score of Affect-LM
over Cleverbot when compared to the Fisher Reference. In addi-
tion to providing a considerably higher similarity in responses, the
observed BLEU score of ≈ 0.22 further serves as a sanity check
that Affect-LM did not overfit on the Fisher dataset and produces
meaningful responses that are independent of the training data4.

As expected, the type of appearance (i.e., Audio only, No Mirror-
ing, Mirroring) had no influence on the perceived capabilities of
understanding the human interlocutor.

6.2 RQ2 - Perceived Anthropomorphism
Our second research question investigates the perceived anthropo-
morphism of NADiA with respect to the dialog source and conver-
sational agent’s appearance. To evaluate this effect, we conducted a
perceptual study on MTurk using a five item scale of anthropomor-
phism [19]. We combined the five items of this scale to get at an
overall score of anthropomorphism (i.e., the average over the items).
As reported in Section 5.2, we found a significant main effect for
both dialog source as well as type of appearance.

With respect to dialog source, we learned that this effect was
mainly driven by the perceived difference in anthropomorphism
between Cleverbot and the Fisher Reference. There was no signifi-
cant difference between Fisher Reference and the proposed neural
language model Affect-LM. This observation is encouraging and
further supports the results discussed in Section 6.1.

As for type of appearance, the perception study conducted on
MTurk reveals that, as expected, the animated versions of the virtual
character (i.e., No Mirroring and Mirroring) appear significantly
more anthropomorphic than the Audio Only condition. There was

4Please refer to https://goo.gl/JHcm8P to watch/listen to the actual stimuli that we
generated for the MTurk study.
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no significant difference between the No Mirroring and Mirroring
conditions, indicating that our approach of using convolutional neu-
ral networks to directly mimic the human user did not improve the
perceived anthropomorphism. In the future, we seek to investigate
more sophisticated neural network based listening behavior gener-
ation [13] as well as manipulate the facial expressions of the virtual
character to better match the affective content of the generated
utterance [21].

6.3 RQ3 - Pleasant Conversation Partner
Our third research question pertains to the effect of both dialog
source and type of appearance on the perceived pleasantness of
the conversation partner. Our analyses comprised two separate
items within our human perception study: (1) pleasantness of con-
versation and (2) perceived niceness of the artificial conversation
partner.

With respect to pleasantness, we observed amain effect for dialog
source, but not for the type of appearance. We observe that this
effect is mainly driven by the increased pleasantness for the Fisher
Reference. Fisher Reference is significantly rated as more pleasant
than Cleverbot. There are no other significant results observed.

The observed results for the perceived niceness of the artificial
conversation partner confirms our hypothesis. We observe that
Mirroring is perceived as significantly nicer than the Audio only
condition. However, there is no significant difference between Mir-
roring and No Mirroring conditions.

7 CONCLUSION
Within this workwe evaluated our Neurally Animated Dialog Agent
NADiA and compared its performance to both a human reference
and a state of the art baseline both using subjective as well as objec-
tive evaluation criteria. We identified (RQ1) how well NADiA can
understand its human interlocutor, (RQ2) how anthrompomorphic
NADiA is perceived, and (RQ3) how pleasant the conversation
with NADiA is perceived. For all three research questions we found
encouraging results and could show that the here proposed NA-
DiA architecture has potential to act as an enjoyable and empathic
conversation partner. For future work we seek to improve its long-
term memory capabilities by complementing the neural language
generation module with a dedicated memory network and seek to
improve its listening behavior by training a neural network that
does not simply mimic the facial expressions of the human user.
Overall, we believe that artificial conversational agents still have
a long way to go to replace interpersonal human contact. How-
ever, we show that artificial neural architectures have the ability to
uphold the illusion of understanding and some anthropomorphic
characteristics during brief conversations.
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