Sauire: Interactive Ul Authoring via Slot QUery Intermediate

REpresentations
Alan Leung Ruijia Cheng Jason Wu
Apple Apple Apple
Seattle, WA, USA Seattle, WA, USA Seattle, WA, USA
alleu@apple.com rcheng23@apple.com jason_wu8@apple.com
Jeffrey Nichols Titus Barik
Apple Apple
Seattle, WA, USA Seattle, WA, USA
jwnichols@apple.com tbarik@apple.com
(~)
content G change the font and color Submit Close
cOo VerticalList A \;e;:::g‘:\sa;: ‘gd\::c‘::r displaying multiple recipes as separate cards, allowing users to view a brief description ontiamily

element
~ TallCard The TallCard is ideal for representing a single recipe with an image and details such as name,
fsAufal

description, and times in a vertical layout.

content
ca8 Paragraph A paragraph is suitable for presenting a brief description of the recipe and
additional details in a structured text format.

paragraph_text

cwe recipes[].description The description provides a brief overview of the
recipe, which complements the title and image
by giving more context to the user.

image

cwo recipes[].imageURL The imageURL is the most suitable data property for the image slot as
it provides the URL to the recipe image, which s essential for
displaying the image on the card.

title
~ Heading A heading is prominently used for titles and section headers, making it suitable for
fsAufa]

displaying recipe names clearly.

heading_text

cw8 recipes[].name The name of the recipe is the most suitable data property
for the heading text as it clearly identifies the recipe to the
user.

Grid A grid is suitable for displaying several recipes as visually distinct cards, allowing users to browse multiple recipes at

0 once

Carousel Aca
e

lisplay a horizontally scrollable collection of recipe cards, allowing the user to see

[fontfsans][fonbserif][font—monoJ

text.color

Fluffy homemade pancakes perfect for
breakfast.

text.color.intensity

[0 JoJfeoe) 200 0] s00)ro0 oo

i @

Spaghetti Bolognese
A classic Italian pasta dish with rich, meaty
sauce.

Chicken Caesar Salad

A hearty salad with grilled chicken, romaine

lattiira and rreamv Casear draccina

Figure 1: The SQUIRE system for iterative UI prototyping. The SQUIRE system incrementally generates a tree-based intermediate
representation @ that concisely encodes high level architecture as a component hierarchy. Components @ holds slots @ that SQUIRE
instantiates with the help of an LLM that incrementally updates its context as the hierarchy becomes increasingly detailed. To support design
exploration, when SQUIRE determines a component may have multiple compatible alternatives (e.g. list or grid), SQUIRE offers special choice
nodes @ which, when selected, modify the UI to reflect the new alternative. To make fine-grained aesthetic changes (e.g. typography, color),
the user selects a target @ in the live preview and enters a free-form command @. SQUIRE interprets the command, mutates the targeted
component accordingly, then offers ephemeral controls to apply further semantically-related changes @ to help the developer evaluate

design alternatives.

Abstract

Frontend developers create Ul prototypes to evaluate alternatives,
which is a time-consuming process of repeated iteration and re-
finement. Generative Al code assistants enable rapid prototyping

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 Inter-
national License.

UIST ’25, Busan, Republic of Korea

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2037-6/2025/09

https://doi.org/10.1145/3746059.3747672

simply by prompting through a chat interface rather than writing
code. However, while this interaction gives developers flexibility
since they can write any prompt they wish, it makes it challenging
to control what is generated. First, natural language on its own
can be ambiguous, making it difficult for developers to precisely
communicate their intentions. Second, the model may respond un-
predictably, requiring the developer to re-prompt through trial-and-
error to repair any undesired changes. To address these weaknesses,
we introduce SQUIRE, a system designed for guided prototype ex-
ploration and refinement. In SQUIRE, the developer incrementally
builds a UI component tree by pointing and clicking on different

https://creativecommons.org/licenses/by-nd/4.0
https://creativecommons.org/licenses/by-nd/4.0
https://creativecommons.org/licenses/by-nd/4.0
https://doi.org/10.1145/3746059.3747672

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

alternatives suggested by the system. Additional affordances let the
developer refine the appearance of the targeted UL All interactions
are explicitly scoped, with guarantees on what portions of the UI
will and will not be mutated. The system is supported by a novel
intermediate representation called SQUIREIR with language support
for controlled exploration and refinement. Through a user study
where 11 frontend developers used SQUIRE to implement mobile
web prototypes, we find that developers effectively explore and iter-
ate on different Ul alternatives with high levels of perceived control.
Developers additionally scored SQUIRE positively for usability and
general satisfaction. Our findings suggest the strong potential for
code generation to be controlled in rapid Ul prototyping tools by
combining chat with explicitly scoped affordances.

CCS Concepts

+ Human-centered computing — Systems and tools for inter-
action design; User interface programming,.

Keywords

UI prototyping, intermediate representations, artificial intelligence

ACM Reference Format:

Alan Leung, Ruijia Cheng, Jason Wu, Jeffrey Nichols, and Titus Barik. 2025.
SQUIRE: Interactive UI Authoring via Slot QUery Intermediate REpresenta-
tions. In The 38th Annual ACM Symposium on User Interface Software and
Technology (UIST °25), September 28-October 1, 2025, Busan, Republic of Korea.
ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/3746059.3747672

1 Introduction

Building user interface prototypes is a standard method to evaluate
design alternatives and elicit feedback. Traditionally, this kind of
prototyping involves a time-consuming process requiring multiple
iterations of exploration, implementation, and refinement [3, 16]
where constructing high-fidelity prototypes is generally the most
time-consuming part of the process [23, 29, 30]. Recently, generative
Al coding assistants such as ChatGPT [34] and v0 [48] have emerged
promising to enable rapid prototyping with high fidelity using
only a chat interface. These tools allow designers and developers
to explore and refine prototypes simply by prompting language
models to perform the heavy lifting of translating natural language
requests to executable code, removing much of the manual effort
previously required to code prototypes.

Still, while prompt-based interactions may give users substantial
latitude in the way they frame their requests, this freedom is a
double-edged sword. First, interaction at the level of prompts is a
challenge due to the inherent ambiguity of natural language, with
several studies echoing the challenge that users often struggle to
formulate prompts to convey their intent effectively [2, 46, 54].
Second, the output of generative models can be unpredictable [13,
24, 53]. Actual outputs sometimes contain changes not intended by
the user, which leads to slow trial-and-error loops in an attempt to
compare different results and converge on a desired outcome [25].
This second problem is exacerbated by the fact that developers end
up spending a substantial amount of time reviewing and comparing
iterations rather than generating the code itself [46].

We posit that these limitations stem from the fact that free-form
prompt interactions lack two desirable properties:

Alan Leung, Ruijia Cheng, Jason Wu, Jeffrey Nichols, and Titus Barik

(1) It should be possible to precisely scope change requests to spe-
cific aspects of the system being modified. This gives the user
confidence that no changes beyond the specified scope have oc-
curred. By contrast, current chat-based programming assistants
generally permit the model to modify generated code arbitrarily,
with no guarantees that any constraints specified in the prompt
will be obeyed.

(2) Alternative outputs should be fast and easy to compare, ideally
with minimal friction when navigating between them. By con-
trast, the predominant chat-based paradigm relies on a linear
chat history without branching navigation, so picking between
alternatives can be a tedious copy-paste exercise.

In this paper, we present SQUIRE, a high-fidelity UI prototyping
tool that imbues its interactions with the above two properties:
it gives users explicit controls to scope modification and quickly
explore alternatives. In SQUIRE, users start a project by providing
a prompt that describes their goals for the UI, along with sample
data containing information for SQUIRE to use as a reference. Users
then construct Ul as a tree of components in top-down fashion by
prompting SQUIRE to fill holes representing missing yet expected
functionality. In response to this kind of request, SQUIRE generates
a list of appropriate alternatives, each scoped specifically to the
targeted hole in the unfinished UL Clicking on each alternative
immediately updates a live rendered preview as well as underly-
ing code, making it easy to visualize the differences. The user can
also pose targeted requests to modify the appearance of specific
areas of the Ul with the guarantee that no code outside the in-
tended scope will be mutated. In response to this kind of request,
SQUIRE generates ephemeral controls [6] that allow the user to ap-
ply semantically-related changes quickly and without re-prompting.
In all cases, the LLM acts as a companion, presenting reasonable
choices for the user to evaluate, but leaving the user with agency
to accept or reject its suggestions.

The features of SQUIRE are underpinned by SQUIREIR, a novel
domain-specific intermediate representation (IR) for encoding the
space of Ul alternatives generated by SQUIRE. This representation
enables the above interactions through special operators that rep-
resent holes needing instantiation (null operators) and explorable
alternatives (choice operators), all while remaining automatically
convertible to executable code.

This paper makes the following contributions:

o We develop SQUIREIR, a domain-specific IR designed for scoped
exploration and refinement of high-fidelity prototypes.

e We present SQUIRE, a graphical development environment built
atop SQUIREIR for exploration and iterative refinement, which
we instantiate for the domain of mobile web application screens.

e Through data collected from a user study of 11 frontend de-
velopers, we find that (1) SQUIRE’s interactions encouraged
participants to explore frequently, rather than simply use
SQUIRE as a code accelerator, (2) participants felt encouraged
to take risks when making changes, knowing that the con-
sequences of making atypical decisions could always be un-
done without friction, (3) participants indicated confidence
that SQUIRE matched their intent when making changes, and

https://doi.org/10.1145/3746059.3747672

SquIRE: Interactive Ul Authoring via Slot QUery Intermediate REpresentations

(4) participants were generally pleased with the quality of code
and visuals generated by the system.

2 Example SQUIRE Usage

Mina is a frontend developer who builds mobile web apps. She uses
SQUIRE to prototype an app screen for searching for movies. When
Mina first loads SQUIRE, she is greeted with the following interface,
which shows an empty canvas with a button for getting started

e -
1
Click here to get started

Getting Started: To begin, SQUIRE asks Mina to provide (1) a system
prompt describing her overall goal for the screen, and (2) sample
data in JSON format that SQUIRE will use as reference data. She
enters the following system prompt: “A screen for viewing movies.
The screen should allow the user to see several different movies in a
scrollable view.” Since she intends for her project to use an existing
movie database, she extracts some of its contents and provides them
as sample data.

Constructing the Component Tree: With preliminaries com-
plete, Mina presses the button @, and SQUIRE begins processing
its first request. After a few seconds, SQUIRE updates the canvas
to show a list of choices @. These choices are proposals for com-
ponents for the top level of the screen, along with design ratio-
nale for each choice. Mina reviews the choices and decides that a
VerticallList would be most suitable since she agrees with the
rationale that it would “allow the user to see several movie titles,
overviews, and poster images at a glance."

Create Bookmark @ Version < 1 > 0O

content
cue VerticalList A verticallist allows the user to see several movie titles, overviews, and posters at a glance, making it easy to
browse through multiple movies.

o Grid A grid layout can effectively display movie posters, allowing users to quickly scan through visual representations of the
movies.

Carousel A carousel can be used for a horizontally scrollable view of movie posters, providing an interactive way to browse
through movies.

Mina is ready to move on to the next step, so she clicks @ to open the
slot query dialog @. This is SQUIRE’s mechanism for asking which
child of VerticallList Mina would like to start constructing next.
Mina selects element and augments its textual description to provide
more detail about her intended purpose for element: “Each element
should represent a single movie.”

VerticalList A vertical list allows the user to see several movie titles, overviews, and posters at a glance, making it easy to
browse through multiple movies.

Slots: element custom

o

o element Fach element should represent a single movie. e

As before, SQUIRE processes the query for a few seconds and
presents Mina with a new set of choices. This time, the choices
represent possible components that could serve as list elements,
where each element depicts a single movie. Mina decides she would

like to use a WideCard component that uses a “horizontal layout
that can display an image along with some text details.”

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

element
co6 WideCard A WideCard is suitable for representing a single movie with a horizontal layout that can display an
image along with some text details.

TallCard A TallCard is another option for representing a single movie, with a vertical layout that can include an

image and additional information.
Up until this point, Mina has been selecting components one-by-
one, which offers precise control but also slows her down in a
situation where she would rather rapidly generate an initial de-
sign to refine more carefully afterwards. To do this, Mina switches
to Auto Expansion Mode @ (refer back to the first figure in this
section), which tells SQUIRE to make its own independent choices
without waiting for feedback after each step. Mina now opens the
slot query dialog for WideCard and submits a new query for the title
slot. As shown in the following figure, SQUIRE generates a Heading
component whose text is the title of a movie, first by choosing the
Heading component, and second by choosing movies[].title to
be its heading_text slot (movies[].title is SQUIREIR notation for a
reference to sample data, which in this specific case references the
title element of each movie).

A WideCard is suitable for representing a single movie with a horizontal layout, allowing the user to
see the title, an overview, and the poster image at a glance.

title
coe iNg A heading is suitable for prominently displaying the movie title of each card.

heading_text

cuo movies[].title The movie title is the most suitable data property for the
heading text, as it is the primary identifier for each movie and
should be prominently displayed.

Mina proceeds to use the same procedure to populate the image
and content slots of the WideCard component. At the conclusion
of this process, SQUIRE displays the following screen showing the
completed component tree as well as a live preview of the rendered
design. For each of the title, image, and content slots, Mina only had
to make one request-SQUIRE automatically generated the subtree
by chaining together the appropriate decisions. Throughout this
process, the Preview Pane @ also continuously updated.

7

Inception

A thief with the ability to
W enter people's dreams and
steal their secrets from th...

cme Y

A Jo for alowing the user to
500 th e, an overview, and the poster image st a glance.

The Dark Knight
Batman raises the stakes in
his war on crime. With the
help of Lt. Jim Gordon and..

 movies(].overview

 movies].posterPath

Interstellar

The adventures of a group
o of explorers who make use
of a newly discovered..

oo ¥ Aheadings s

coe Y [-tit

Adding Custom Slots: Mina is satisfied with the initial design, but
she notices that each card is missing some important details, such
as the movie duration. She would like to add this information to
the WideCard component, but she sees that there is no existing slot
for runtime. This is because WideCard starts life with a predefined
template that includes slots for title, image, content, but no others.
While this provides an initial starting point, Mina will need to
customize it to meet her unique needs. To do so, Mina selects the
custom option in WideCard’s slot query dialog @ and submits a
query for a new slot named runtime with the description “The
runtime of the movie”

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

A WideCard is suitable for representing a single movie with a horizontal layout, allowing the user to
see the title, an overview, and the poster image at a glance.

S\OL&Q;JSL(;M

V| runtime The runtime of the movie

LLM-Generated: | rating release_date tagline

(o)

SQUIRE responds by modifying WideCard’s template to add this
new slot while keeping consistency with the preceding version
of the template, then instantiates it with a caption displaying the
movie duration.

Beneath the slot query dialog, Mina sees that SQUIRE has also
auto-generated some suggestions for other possible custom slots.
On reviewing the suggestions, Mina realizes that a movie rating
would also be a good thing to add. She clicks the rating suggestion

, and SQUIRE modifies the template accordingly to also include a
movie rating with star icons

Inception

A thief with the ability to
enter people's dreams and
steal their secrets from th...

o (A]

The Dark Knight
Batman raises the stakes in
his war on crime. With the
help of Lt. Jim Gordon and...

caption_text
o movies].durationText The
co8 text

card

S i

Refining Detailed Aesthetics: Mina now decides to focus on
detailed aesthetics: she would like to change the typography on
each card to use a serif font. To do this, she double clicks a card in
the Preview Pane, which opens the Refinement Pane to the right.
She enters the command “Use serif font” and submits it. SQUIRE
responds by modifying the fonts used, and additionally presents a
set of ephemeral controls for tweaking the fonts further: one each
for the title, overview, and movie duration. By making different
selections in these controls (2, Mina is able to apply changes to the
targeted components in real time to quickly visualize the differences.
Without these controls, Mina would have needed to submit separate
requests for each change, increasing the latency of each refinement.

Use serif font Submit Close
Inception
A thief with the ability to
enter people's dreams and
steal their secrets from...

font.family

‘fom-sans ‘[fom-serif]‘ fontfmono‘

font.family

oh 2o ‘ fon‘_sansy‘[fom-serif]\ font-mono|

font.family

"fontfsans:H font-serif ‘[font—mon9

The Dark Knight

Batman raises the stakes in

Exploring Further: Satisfied with her first prototype, Mina now de-
cides she would like to investigate a different set of design decisions
altogether: what would the screen look like if she chose to use a
grid instead of a list to display movies? To do this, she simply selects
the Grid choice that is sibling to the VerticallList component she
originally selected. Mina can now use all the same techniques she
has already used to quickly produce a new prototype that employs
a grid of movies instead. In fact, she can revisit choices throughout
the component tree, not just at the top-level—each set of choices
corresponds to a different set of interchangeable design decisions.

Alan Leung, Ruijia Cheng, Jason Wu, Jeffrey Nichols, and Titus Barik

3 Related Work

We review literature in three related areas: model-based UI sys-
tems, generative Ul models, and UI design support tools. These
represent the three areas brought together in SQUIRE: intermediate
representations for Ul, generation of U, and exploration of UL
Model-Based UI Intermediate Representations. Model-based
UI (MBUI) approaches [37] seek to automate the creation of user
interfaces by translating from high-level specifications of UI behav-
ior and appearance to concrete user interfaces. Early work such as
UIDE [22] and Jade [55] fully automate this process through trans-
lation to target implementations, with some later systems such
as SUPPLE [15] employing optimization techniques at runtime to
customize UI for target contexts. These approaches generally rely
on manual authoring of UI specifications, and because much of this
work predates contemporary breakthroughs in generative ML mod-
els, typically produce UI using deterministic, rule-based techniques.

A central aspect of MBUI systems is that they employ inter-
mediate representations (models) to abstract different aspects of
the user interface being developed. Although a variety of MBUI
intermediate representations have been proposed for different pur-
poses [4, 36, 47], we focus here on presentation models [27] since
they are most related to SQUIREIR. Early presentation models fo-
cused on encoding specific types of user interfaces, such as menus
and dialog box layouts [33, 55], with later iterations supporting
more complex interfaces including components such as visualiza-
tions [27]. Although different systems employed different conven-
tions, a typical feature of presentation models is treatment of UI as
a collection of decision rules and constraints defining layout and
component compatibility, meant to be refined by the user and trans-
lated by the system into a running application. The HumaNoOID [43]
system is particularly relevant in this context as its goal is also to
enable rapid UI prototyping. In HumANoOID, the user adds increas-
ingly detailed constraints to an initial template specification, with
the system able to instantiate Ul incrementally from incomplete
specifications by assuming reasonable defaults when presentation
rules are underspecified. SQUIREIR is inspired by the notion of in-
complete Ul specification as a substrate for incremental refinement,
but SQUIREIR takes a conceptually different approach that lifts ex-
ploration of alternatives (in addition to refinement) to a first-class
consideration—the IR encodes Ul alternatives being explored in par-
allel (via choice nodes), rather than a single instance being linearly
refined, which enables efficient navigation between the alternatives.
Generative UI Models. We describe two related areas aiming
to specialize generative large language models [17, 35] toward Ul
generation [39, 44, 50] and evaluation [11, 12].

In the first line of work, researchers have proposed fine-tuning
techniques intended to imbue language models with improved
performance in UI generation tasks. UICoder [50] is a LLM fine-
tuned for iOS UI generation from synthetically generated programs
filtered for quality using a combination of code analysis and vision-
language models. Other work has focused on more specific aspects
of Ul generation, such as PosterLlama [39] and LayoutNuwa [44],
which both employ specialized fine-tuning procedures over images
and HTML to improve layout generation quality. This line of work
is complementary to our goals with SQUIRE, as advances in model

SquIRE: Interactive Ul Authoring via Slot QUery Intermediate REpresentations

capabilities accrue toward improved relevance and aesthetic quality
achievable by SQUIRE.

A second line of work has focused on applications of LLMs

for UI evaluation to aid design activities. Duan et al. [12] devel-
oped a Figma plugin employing GPT-4 to generate heuristic eval-
uations of Ul mockups. Subsequent work produced UICrit [11], a
dataset of expert mobile design critiques for the purpose of support-
ing automated UI quality evaluation. UIClip [49] is a CLIP-based
model fine-tuned for quality and relevance assessment given pairs
of screenshots and descriptions. While not employed by SQUIRE,
we see these efforts as enablers for future opportunity to incorpo-
rate automated feedback, either for feedback to the user during
prototyping, or as part of an underlying generation pipeline itself
to improve generated outputs.
UI Design Support Tools. Ul design is an iterative process that
involves exploration of alternative versions and refinement of ex-
isting designs [7]. Exploring different design directions, especially
at early stages, helps avoid the pitfall of fixation [21] and leads to
better design outcomes [10], while refinement allows designers to
incrementally work towards design goals [9].

Towards those aims, a number of research systems have been
developed to support exploration and refinement in UI design. The
Scout system [42] helps designers rapidly explore alternative UL
layouts by framing layout generation as constraint satisfaction over
constraints derived from encoded design principles and designer
feedback. The d.note system [18] treats iteration as revision: the
user expresses modifications to Ul as ink annotations and sketches
that the system recognizes and manifests as changes to a Ul being
live-prototyped. Misty [26] explores UI generation through concep-
tual blending of existing designs with design inspirations in the
form of screenshots. SQUIRE is a synthesis of insights from these
different lines of work to combine rapid exploration, targeted refine-
ment/revision, LLM-aided design inspiration, and live-prototyping
in a single system. However, unlike SQUIRE, Scout and d.note do
not generate code, and Misty uses images rather than text as its
input modality.

Looking beyond research systems, we see that commercial star-
tups have also produced LLM-based code assistants meant for Ul
design, where Claude Artifacts [1] and Vercel v0 [48] are two promi-
nent examples of tools that allow users to provide prompts to gen-
erate and live-render Ul code. We contrast with these efforts by
noting that these tools employ linear chat as the sole mechanism
for exploration and refinement, which has the limitations described
in §1 that SQUIRE aims to address.

4 The SQUIRE System

In this section, we outline the design motivations of the system
(§4.1), describe the SQUIREIR representation that defines the data
structure for encoding user interfaces and their variations (§4.2),
then describe the design and architecture of SQUIRE, which employs
SouIREIR as its underlying data structure (§4.3).

4.1 Design Motivations

The design motivations of SQUIRE are supported by literature
in the area of AI developer support tools and a qualitative sur-
vey meant to elicit pain points of frontend developers (N=21) at

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

a large technology company when using current generative Al
developer assistants.

DM1: Make the scope of changes explicit. A challenge when
interacting with Al assistants is the open-ended nature of commu-
nicating intent through natural language. Prior work [41, 54] has
shown that users find difficulty crafting prompts that adequately
convey intent, resulting in frustration when models fail to meet
expectation. One contributing factor is the existence of implicit
intent—unspoken details that users elide because writing such de-
tailed prompts is onerous [5]. Survey respondents noted that Al
assistants “need hand-holding” and “careful prompting” and even
then “don’t often go well”. Another respondent noted they would
“like to see tools that are more opinionated [and] more directly
enable an experienced programmer to drive the LLM,” pointing to-
wards a desire for explicit control affordances in addition to prompts
when interacting with code assistants. In SQUIRE, developers in-
teract with specialized controls bound to specific parts of the Ul
(components) or styles (ephemeral controls), and the model is con-
strained accordingly.

DM2: Encourage iteration and exploration. A weakness of ex-
isting chat-based Al assistants is the slow iteration loop caused by
unreliable output and inconsistency between prompt responses [5,
51, 54]. The resulting friction limits developers’ ability to explore
alternatives efficiently, with prompt iteration often devolving to
trial and error [54]. Survey responses noted that “prompting an
LLM is easy, but inefficient,” and that “it can definitely slow you
down if you rely solely on GenAl to produce code for you” be-
cause they end up “spending more time trying to piece together
bits of generated code” with copy-paste. Despite this, respondents
did find that generative Al assistants helped them ideate different
approaches—indeed, several respondents noted the positive aspects
of generative Al in providing “new perspective[s] to solve a prob-
lem,” helping “ideate on how to solve complex problems,” or serving
as a “thought assistant” to develop different high level designs.
SQUIRE treats exploration and iteration as a first-class concern, pro-
viding specialized interactions for exploring different UI choices,
beyond just prompt revision and tuning, and quickly navigating
between different versions explored.

DM3: Facilitate review of generated outputs. Several respon-
dents noted the challenge and tedium of reviewing model outputs
for correctness. For example, one respondent noted that while gen-
erative models may "generate code quickly...often that time gained
is lost again” in reviewing and debugging the output. Another re-
spondent indicated they spent more time "understanding generated
code" compared to writing it themselves. This echoes findings from
prior work that found users have difficulty reviewing low-level
output code for correctness [46, 52], with one developer noting that
they “did not understand several parts of the function generated,”
which caused them “to get rid of the whole function...and start
over.” SQUIRE provides users with a high-level visual representation
to convey major UI components and their relationships, without
requiring the developer to review low-level target code on every
iteration. This design motivation is complementary to DM2, as an
important aspect of exploration is the ability to quickly review
variants for comparison.

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

Template <template id="x-button-template">
<button><slot name="label"></slot></button>
</template>

Description “A button with a label.”
Slots (label, “The button label”, 1)

Template <template id="x-verticallist-template">
<div class="flex flex—col items-stretch gap-2">
<slot class="w-full" name="element"></slot>
</div>
</template>

Description “Use a VerticalList to present several homogeneous items in a
vertical arrangement.”

Slots (element, “An element in the list.
Each element is rendered identically.”, +)

Figure 2: Component definitions for Button (top) and
Verticallist (bottom).

4.2 SquirelR: Language Definition

In this section, we define the intermediate representation used
within SQUIRE as an abstraction over Uls. By abstraction, we mean
that SQUIREIR is capable of representing multiple alternative user
interfaces within a single program (covered in detail in §4.2.2), along
with optional holes indicating portions of the UI that have yet to
be generated. To do this, SQUIREIR hierarchically composes compo-
nents with null operators that represent children that have not yet
been explored and choice operators that represent decision points
between alternative but compatible components. Each component
itself consists of a template containing placeholders augmented
with contextual metadata.

4.2.1 Component Definition. Each component is an HTML tem-
plate with zero or more named placeholders for children, called slots.
A component definition additionally contains a natural language
description of the component and natural language descriptions for
each slot. More precisely, a component is a tuple C = (T, N¢, D¢, o)
where T is an HTML template, N, is the component name, D, is a
natural language description, and o is a set of slot definitions. Each
slot definition S = (N, Ds, a) consists of a slot name N, a slot
description Ds, and arity a € {1, +} that indicates whether the slot
may be instantiated only once (1) or multiple times (+). In SQUIRE,
we call the set of all component definitions a component library.

Figure 2 shows example component definitions for two com-
ponents, a Button and Verticallist, respectively. Button is a
simple button with a label, while VerticallList defines a layout
in which child elements are stacked vertically with a small gap be-
tween each. Notice that VerticallList’s element slot has arity +,
which specifies that the element slot can be instantiated multiple
times in a single Verticallist instance since the list can contain
multiple elements, not just one.

To decide on a set of components with broad coverage, we sam-
pled 60 mobile app screens from UXArchive [45], an online reposi-
tory of mobile app screen captures, then classified them according
to the components they used. We then implemented HTML tem-
plates for each component class found. We stopped at 60 screens
because additional samples led to diminishing returns and were no
longer contributing to the set of new components we classified. In

Alan Leung, Ruijia Cheng, Jason Wu, Jeffrey Nichols, and Titus Barik

total, the SQUIRE component library contains 35 components (see
Table 1 in Appendix A for the list of the components).

Note that SQUIREIR itself is parametric in its component library
and supports extensibility for different design systems or UI compo-
nent conventions—that is, its component library can be substituted
with another without modification to other parts of the system,
as long as the components are defined in the format described.
Additionally, templates only serve as starting points and can be
customized further via custom slot queries, which we describe in
more detail in §4.3.3.

4.2.2 Component Instantiation. A SQUIREIR program nests compo-
nent instances, where each instance is a component definition paired
with a substitution of its slots for children. For example, consider a
screen containing a single button labeled "Click me". In SQUIREIR,
we denote this by the program Screen[content — Button[label — “Click
me”]], where Screen is the top level of the UI that fills the view-
port. In general, a component instance may contain more than one
slot, in which case multiple slot mappings may appear within the
substitution: X[a = A, b— B, ...].

Null operators @. Consider the situation when a SQUIREIR pro-
gram has only been partially constructed. For example, consider
a screen containing a labeled button Screen[content — Button[label
— @]], where we intend to define a label for the button, but it is
yet to be defined. The null operator @ serves as a promise that
SouIRrE will expand the corresponding slot into one or more com-
ponents (slot expansion is covered in detail in §4.3). For brevity, we
equivalently write Component[@] to represent that all slots map to
@ (e.g.Button[@] is equivalent to Button[label - @]).

Choice operators ®. Up until now, what has been described about
SouIREIR has been a notation for a single UI with holes. However,
an important aspect of SQUIREIR is that it can describe multiple
alternatives simultaneously in a single program. This is achieved
through choice operators that denote there are multiple compatible
components that inhabit the same position in the UI hierarchy. For
example, Screen[content — @®(Verticallist[@],Grid[@])] denotes a
screen that may either use a vertical list or a grid as its main lay-
out. Choice operators may nest within each other as well. For ex-
ample, Screen [content — ®(Verticallist [element — @®(TallCard [@]
,WideCard [@])],Grid [@])] abstracts over 3 Uls:

(1) Screen[content + VerticallList[element — TallCard[@]]]
(2) Screen[content ~ Verticallist[element — WideCard[@]]]
(3) screen[content — Grid[@]]

From top to bottom, these describe (1) a screen with a vertical
list of tall cards (a tall card is a card whose contents are arranged
vertically), (2) a screen with a vertical list of wide cards (a wide
card is a card whose contents are arranged horizontally), and (3) a
screen with a grid layout.

At most one operand of a choice operator may be selected, which
we denote by underlining the selection. For example, Screen[content
— ®(VerticallList[element — &(TallCard[@],WideCard[@])],Grid[@])]
translates to Screen [content — Verticallist [element — TallCard[@]]]
by substituting choice operators for their selected operands. In gen-
eral, any combination of selections leads to a distinct instantiation.
Datum instances. To represent data access, SQUIREIR programs
include datum instances in addition to component instances. Datum
instances act as queries into an external store of sample data. For

SquIRE: Interactive Ul Authoring via Slot QUery Intermediate REpresentations

example, Image [path — movies[].posterPath] represents an image
whose asset path is given by movies[].posterPath. The translation
of this asset path to a concrete request is detailed in §4.3.5.
Instance identifiers. SQUIREIR associates each component in-
stance with a unique identifier to disambiguate it from other
instances of the same component definition. Consider the fol-
lowing example annotated with identifiers: Screen; [content —
®(Verticallist, [element — &(TallCards [@],WideCard, [@])],Grids
[element — WideCardg])]. This representation distinguishes WideCard,
from WideCardg to denote that each may have individual styling
and contents different from the other, despite both being instances
of WideCard. SQUIREIR always associates instances with identifiers,
but for clarity in this paper we may exclude them when clear
from context.

4.3 SQUIRE: System Design

We now describe the design and implementation of SQUIRE.
Throughout this section, we refer to the SQUIRE subsystems de-
picted in Figure 3, which illustrates the system components and
their relationships.

4.3.1 Project preliminaries. To initialize a project, the developer
provides SQUIRE with a project description that contextualizes their
intent for the UI being developed. This project description contains
(1) a natural language prompt indicating the purpose of the screen
to be developed, and (2) JSON-formatted sample data that SQUIRE
references to generate data requests in the form of datum instances.
For example, referring back to the motivating example from §2,
Mina provided the following prompt: “A screen for viewing movies.
The screen should allow the user to see several different movies
in a scrollable view.” Mina also provided the sample data shown
in Figure 4 consisting of a JSON sample together with a schema
that associates each field in the sample data with a description and
type. Together, these form the context used as ingredients of the
prompts used by SQUIRE.

4.3.2 Slot expansion. The structure of a SQUIREIR program directly
corresponds to its representation in the Visual Editor, which depicts
the component tree in the left half of the SQUIRE interface. Recall
step @ from §2, in which Mina requested different component
choices for the top level of the screen. The equivalent SQUIREIR pro-
gram is Screen; [content — ®(VerticallList,,Grids,Carousel,)]. That
is, choice nodes are rendered as labeled checkboxes in the Visual
Editor, where the selected component’s checkbox is enabled. In
subsequent step @, Mina submitted a slot query for the element slot
of VerticallList,. The Slot Query Engine begins processing the
query by inserting a null operator substitution VerticallList, [ele-
ment — @], which the Visual Editor displays visually as a progress
spinner that indicates that SQUIRE is currently processing a re-
quest for more choices for element at the position of the null op-
erator. The Slot Query Engine completes the slot query by rewrit-
ing the corresponding SQUIREIR fragment to Verticallist, [element
— ®(WideCards , TallCardg)] in a process called slot expansion, which
results in a choice between WideCard and TallCard components.
Expansion modes. In Manual Expansion Mode, SQUIRE only ever
adds a single null operator to the underlying SQUIREIR program
at a time, which means that the user must interactively select the

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

® ©o—

(Refinement Ephemeral .
L Engine Controls } [Preview J
Component
D:Srgj‘e%ton Definition Code
P Store
A
(Slot Query [Target Code
Engine SquirelR Generator
>

L | =

Custom Slot
Suggestion Visual Editor
Engine

Figure 3: SQUIRE system. The Slot Query Engine modifies com-
ponents and SQUIREIR in response to slot queries, which can either
be manually authored or generated by the Custom Slot Suggestion
Engine. The Refinement Engine and Ephemeral Controls modify
components in response to refinement queries. Engines making
LLM requests are outlined in bold. Bold arrows mean the source
modifies the target. The Visual Editor, Refinement Pane, and Pre-
view Pane subsystems are groups A, B, and C, respectively.

Sample { "movies": [
{ "title": "Inception",
"posterPath": "static/inception.jpg",
"overview": "A thief with the ability to enter...",
"voteAverage": 8.8,
},

Schema { "name": "Movie",
"description": "A movie",
"elements": [
{ "name": "title",
"description": "Movie title",
"type": "String" },
{ "name": "posterPath",
"description": "URL to poster image.",
"type": "String" },
{ "name": "overview",
"description": "Short synopsis of the movie",
"type": "String" },
{ "name": "voteAverage"
"description": "Average user rating",
"type": "Double" },

Figure 4: Sample data together with a schema assigning descrip-
tions and types to fields.

slot for each slot expansion operation. However, it is perfectly valid
for a SQUIREIR program to contain multiple null operators—this is
the case for Auto Expansion Mode, in which SQUIRE inserts a null
operator substitution for every uninstantiated slot in the subtree
being expanded. In this case, SQUIRE expands null operators in
breadth first search order, and in cases where a newly instantiated
child component instance has slots of its own, SQUIRE recursively
inserts more null operators for each, and so on. The net result of this
progressive expansion is that SQUIRE generates an entire subtree of
components based on a single interaction by the user, which is how
Mina is able to generate a card structure with minimal interaction
in step

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

4.3.3 Customization. The system as described so far only permits
composition of static templates. However, a system that only sup-
ported immutable templates would severely limit the freedom of
developers to customize designs for specific use cases. Referring
back to our motivating example with Mina, note that it was pos-
sible for Mina to create an initial UI with a list of cards with title
and overview text, but she later wished to include additional de-
tails (e.g. movie rating) or change aesthetics (e.g. typography). This
section describes the features that enable these customization capa-
bilities: custom slots queries and the Refinement Pane.

Custom slot queries. Recall from §4.2.1 that every slot in a compo-
nent definition has two parts: (1) the slot tag itself in the HTML tem-
plate (e.g. <slot name="content"></slot>), and (2) the slot’s meta-
data such as its name and description. The user may perform a
custom slot query in which they ask SQUIRE to modify a template to
include an additional slot (Mina demonstrated this by submitting
the custom slot query for a slot named runtime in step @). In re-
sponse to a custom slot query, the Slot Query Engine first prompts
the model to add a <slot> tag to the targeted component’s template.
More specifically, the prompt includes (1) the HTML template of
the targeted component and (2) the name and description of the slot
to be added. Based on this context, the model infers an appropriate
rewrite to the template incorporating the new slot. In a second step,
the Slot Query Engine modifies the backing SQUIREIR program by
mapping the new slot to a fresh null operator and performing a
slot expansion to instantiate the slot just added with a choice of
components. In Mina’s case, SQUIRE expands Mina’s slot substitu-
tion from WideCard [runtime — @, ...] to WideCard [runtime — Caption
[caption_text > movies[].durationText],...]. In other words, SQUIRE
decides that the movie runtime information should be represented
as a caption showing the movie’s durationText value.

Custom slot query suggestions. To help users ideate possible
slots based on context, the Visual Editor auto-populates the slot
query dialog with suggested custom slots. The Custom Slot Sug-
gestion Engine achieves this by prompting the model with the
component tree outline and sample data, which the model uses to
suggest a list of custom slots appropriate for the instance on which
the user has opened the slot query dialog.

Template refinement. SQUIRE maintains a database of compo-
nent definitions called the Component Definition Store that maps
instances in the component tree to their underlying component
definitions. In this store, each instance maps to its own independent
definition by keying off its instance identifier. By doing this, even
when multiple instances of a component occur in the component
tree, each has its own definition, which allows the user to customize
different instances independently with respect to where they lie
within the overall user interface.

As the user interacts with the Refinement Pane, SQUIRE mu-
tates the targeted component’s template in response to requests for
modifications. This refinement process occurs in two phases.

In the first phase, the Refinement Engine asks the model to edit
targeted templates according to the user’s refinement query. Targets
are known based on the coordinates in the Preview Pane where
the user has double clicked. In this phase, the model cannot make
modifications to any templates that are outside the targeted region
of the Ul since it does not have access to them.

Alan Leung, Ruijia Cheng, Jason Wu, Jeffrey Nichols, and Titus Barik

You are a UX designer asked to develop the app structure for an iOS app. Here
is the description of the app: "A screen for viewing movies. The screen should
allow the user to see several different movies in a scrollable view."

Screen
L content: Content of the screen
L verticallist: A vertical list allows the user to see several movie
titles, overviews, and posters at a glance, making it easy to browse through
multiple movies.
element: Each element should represent a single movie. <-— Please
focus here: what should be instantiated here?

You have at your disposal the following subcomponents. Which would make sense
to use for the slot named "element" that is highlighted above?

— Verticallist: Use a Verticallist to present several homogeneous items in a
vertical arrangement.

- Button: A button with a label

— WideCard: Use a WideCard to represent a single item out of many. The contents
are arranged in a horizontal layout with an image on the side.

You have at your disposal the following data properties:

— movies[].title: Movie title. Type: String

— movies[].posterPath: URL to poster image. Type: String

— movies[].overview: Short synopsis of the movie. Type: String

Provide a list of 3 answers in the following format. "name" is the name of the
component or data property. "reason" is your rationale for making that choice
"supporting_data" is a list of data properties that you plan to use as part of
that component.

"t json

[{ "name": "Answer 1", "reason": "Explanation 1", "supporting_data": ["Data 1"
"Data 2"] }]

Figure 5: Example slot expansion prompt derived from step

of §2. The prompt has been edited for brevity and presentation.
We delineate the preamble, input spec, multiple choice, and output
spec via horizontal borders between the sections.

In the second phase, the Refinement Engine asks the model to
classify the changes from the first phase into one or more categories
drawn from a library of aesthetic changes. Based on this classifica-
tion, SQUIRE produces ephemeral controls, which are the interactive
dialogs that appear in the Refinement Pane for the user to refine
template styling via buttons. SQUIRE supports a total of 18 dialog
types derived from a common subset of the utility classes from the
popular TailwindCSS library, which includes styling for typogra-
phy, color, border, sizing, and padding. Each dialog is backed by
an algorithmic subroutine that parses HTML and rewrites class
attributes in the targeted template, which provides fast iteration
that does not require round trips to the model.

4.3.4 Prompt generation. SQUIRE uses 5 different prompt formats:
(1) slot expansion, (2) slot suggestion, (3) custom slot queries,
(4) template refinement, and (5) ephemeral controls generation.
The prompts are modular and composed of four conceptual parts:

e The preamble provides general context for the nature of the
request (all formats).

e The input spec depicts the Ul being operated upon. This can
either take the form of a component tree (formats 1-2), or HTML
snippets (formats 3-5), depending on the purpose of the prompt.

o The choice spec provides the options available for the model to
choose (formats 1,2,5).

e The output spec specifies the expected output format via few-
shot prompting or explicit instructions (all prompts).

Figure 5 depicts an abbreviated slot expansion prompt derived

from step @ of §2. Notice that the preamble includes the project

description as general context. The input spec contains a marker

” next to the target slot so the model

knows which slot to expand. The choice spec lists components and

data available, retrieved from the component library and project
description, respectively. And finally, the output spec asks the model

“<- Please focus here:...

SquIRE: Interactive Ul Authoring via Slot QUery Intermediate REpresentations

to return up to three slot expansion choices along with rationale.
The Slot Query Engine parses these choices and inserts them into
the SQUIREIR using a choice node.

For brevity, we omit examples of the other four prompt formats
but describe them briefly here. Slot suggestion prompts share a sim-
ilar structure to slot expansion prompts, but the output spec asks
for suggested slot names and descriptions. For custom slot queries,
the input spec consists of the HTML template for the targeted com-
ponent, and the output spec asks the model to edit the template to
incorporate the custom slot tag being added. For template refine-
ment prompts, the input spec contains the HTML templates along
the path from the root to the target, and the output spec asks the
model to edit the targeted templates according to the refinement
query. Finally, for ephemeral controls generation, the input spec
contains a diff patch before and after executing the template re-
finement query, the choice spec contains a list of available control
types, and the output spec asks the model to return any controls
matching the changes from the diff.

4.3.5 SQUIREIR — target code. The Target Code Generator trans-
lates the SQUIREIR program to code containing HTML, CSS, and
JavaScript that makes use of the Web Components API [32], a stan-
dard API supported by modern browsers for encapsulating and
composing components through the use of custom tags. First, each
component definition’s template is copied to a <template> tag in
the target code. SQUIRE then generates a <script> tag containing
calls to the Web Component APT’s customElements.define() func-
tion that register each template with a corresponding HTMLElement
subclass, one for each component definition used by the SQUIREIR
program being translated. Note that this JavaScript is not generated
by the model, as it is mechanical boilerplate that simply registers
the name of the component and its template with the browser run-
time. Finally, the component tree is translated to nested custom
element tags that mirror the syntactic structure of the component
tree. Again, this translation does not require use of a generative
model, as the SQUIREIR program already precisely defines the re-
cursive structure of the Ul which can be translated mechanically
to nested custom elements, and HTML provides standard func-
tionality for instantiating custom elements and their children [31].
Figure 6 depicts the nested custom element structure generated
by this translation process, where template definitions occur be-
fore their nested instantiations. Note how multiple x-widecard-14
instances have been generated, each corresponding to a different
movie—SQUIRE infers this repetition based on the + arity defined
for the VerticallList’s element slot.

Datum instance translation. Recall from §4.2.2 that SQUIREIR
uses datum instances to represent external data requests. Datum
instances perform asynchronous GET requests that retrieve sam-
ple data contents from the SQUIRE backend. For example, the
SoUIREIR fragment Paragraph [paragraph_text — movies[].overview]
indicates that the paragraph text should be the movie overview.
This becomes the following HTML fragment after translation (ex-
cerpted from Figure 6): <x-paragraph-23 slot="content"><x-datum
value="movies[@].overview" slot="paragraph_text"></x-datum>
</x-paragraph-23>. The x-datum custom element executes a query
to REST endpoint /datum/movies[@].overview on the SQUIRE server

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

<template id="x-screen-8-template">
<div class="p-2 flex flex-col h-full w-full">
<slot class="w-full" name="content"></slot>
</div>
</template>
<template id="x-verticallist-11-template">
<div class="p-2 flex flex-col items-stretch gap-2 h-full w-full">
<slot class="w-full" name="element"></slot>
</div>
</template>

<x-screen-8>
<x-verticallist-11 slot="content">
<x-widecard-14 slot="element">
<x-paragraph-23 slot="content">
<x-datum value="movies[@].overview" slot="paragraph_text"></x-datum>
</x-paragraph-23>

</x-widecard-14>
<x-widecard-14 slot="element">
<x-paragraph-23 slot="content">
<x-datum value="movies[1].overview" slot="paragraph_text"></x-datum>
</x-paragraph-23>

</x-widecard-14>

</x-screen-8>

Figure 6: Example target code generated by SQUIRE. Template
definitions appear above their nested instantiations.

and substitutes the response into the paragraph_text slot in its
parent component Paragraph.

4.3.6 Implementation Details. SQUIRE is implemented as a single
page web application, with the frontend implemented in TypeScript
and the backend implemented in Python with OpenAI’s gpt-4o
model as the underlying language model servicing SQUIRE requests.
The Preview Pane renders the target code generated by SQUIRE
in an <iframe> tag, which refreshes on each modification to the
SQUIREIR program and Component Definition Store.

5 User Study

Participation. We recruited 11 frontend developers (P1-P11) by
posting study invitations to internal communication channels at a
large technology company. Participants self-reported an average
of 10 years of experience as web frontend developers, with the
majority reporting having used generative Al tools in their work,
although this was not a specific requirement for participating in
the study (6/11 reported using generative Al tools one year or more,
3/11 reported using generative Al for several months, and 2/11
reported having never used generative Al professionally, although
subsequent conversations revealed they had explored generative
Al in personal settings). As part of the recruitment process, partici-
pants were also informed they would receive $15 meal vouchers
for their participation. The total study time was 1.5 hours.
Onboarding (30 minutes). To begin, participants were asked to
watch a pre-recorded tutorial video demonstrating the different
features of SQUIRE. The tutorial included intermittent pauses that
asked participants to exercise a feature of SQUIRE to reinforce the
learning material.

Open-Ended Tasks (40 minutes). After the tutorial, participants
were then given two 20-minute open-ended tasks using SQUIRE
during which they were asked to think aloud. The first task asked
participants to create a scrollable view for movies—this was the
same expository task performed by Mina in §2. The second task

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

asked participants to create a screen for viewing the details of a
hiking trail that might be shown in an app that helps people discover
hiking trails. We chose these tasks because they reflected realistic
scenarios—each task had analogues in the set of real-world screens
we had sampled when designing the component library (§4.2.1)—
were described broadly enough to allow room for interpretation,
and came from different domains to encourage variation between
the two tasks. We used gpt-4o to synthesize this sample data by
(1) prompting the model to generate a schema from the screen
description, (2) prompting the model to generate data that matches
the schema, and (3) manually cleaning the output by fixing errors
such as broken links.

Post-Interview (20 minutes). After participants completed their
tasks, we engaged with them in semi-structured interviews. The
interview questions asked participants for overall sentiment, pos-
itive and negative impressions of individual features, desires for
improvements, comparison with other generative tools they had
used, and impressions on how SQUIRE might fit into their exist-
ing workflows. Finally, participants completed a survey containing
several Likert scale questions about their experience with SQUIRE.
Data collection. Each session’s video and audio were recorded
and transcribed for qualitative analysis. We additionally collected
system traces of every interaction by the participant during their
sessions, which was implemented via instrumentation calls that
emitted to a log file the timestamps and metadata for every action
performed by the participant.

6 Results

We begin by presenting quantitative findings derived from statistics
over interaction traces and quantitative survey responses. We then
present qualitative findings derived from interview transcripts and
think-aloud data collected while participants performed tasks.

6.1 Quantitative Results

We conducted a quantitative analysis over interaction traces that
were automatically recorded while participants interacted with
SoUIRE during their open-ended tasks.

6.1.1 Exploration activities. First, we compute summary statistics
over the number of actions performed to understand the degree to
which participants made use of the different exploration features
of SQUIRE. Per task, participants averaged 30.8 component tree
additions and only 3.8 component tree deletions. The difference
between these two indicates that participants generally preferred
to keep the results of different explorations in their component tree
rather than discarding them, which we postulate is due to the ease
with which SQUIRE allowed them to deselect and navigate between
alternatives (DM2).

Participants had access to a code editor for performing manual
edits to templates as well as a version history that allowed them
to bookmark versions and undo or redo them, but both were used
rarely and accounted for only 39 and 35 actions across all partici-
pants, respectively. As neither feature is novel or essential to the
operation of SQUIRE, we surmise that participants simply did not
feel the need to use them.

Examining interactions with the slot query mechanism in detail,
we observed that participants averaged 6.9 custom slot queries per

Alan Leung, Ruijia Cheng, Jason Wu, Jeffrey Nichols, and Titus Barik

L] L] L]
P1
I 1 1 i [h
o ° .
I [1 (Bl I I I
O L] L L]
P7 I
I e 1 LR 1 e
o o
I 1 LARAR} e LA
°
P5
I - |
L] L] L]
1 1 1 LI 1 [N
L] d L] o o
°
L I e 1
Task start I Component selection Component removal T :
Code editor Version history Refinement ‘e

Figure 7: Interaction traces. Interaction traces for three styles of
SoUIRE usage. Colored circles above each trace represent subjective
ratings. Manually-authored chat interactions are denoted by black
ticks. P1 preferred building up the component tree during explo-
ration, pruning unused choices at the end. P7 preferred frequent use
of the Refinement Pane. P5 performed the most actions, frequently
interspersing additions, removals, and refinement operations.

task, of which the majority (55%) came from LLM-generated slot
suggestions requiring no further revision by the participant, while
the remainder were manually authored by the participant. From
this we infer that participants felt the generated suggestions were
often relevant and met their expectations without any modification.
This result is consistent with qualitative feedback that participants
felt suggestions predicted their intent well (§6.2.2).

Examining Refinement Pane interactions in detail, participants
averaged 14.7 refinement requests per task, of which slightly less
than half (44%) of refinements were achieved by making selections
with ephemeral controls. The remainder were achieved by directly
prompting in the Refinement Pane. On reviewing recordings, a
typical pattern we observed was that participants would provide an
initial refinement query that coarsely represented their intent, then
used subsequent ephemeral controls to evaluate different options
to fine-tune the result.

To further understand the nature of the refinements participants
requested, we collected all refinement prompts, classified them into
categories, and tabulated the number of occurrences in each cate-
gory. The three most frequently occurring categories of prompts
were changes to layout (30%), color (21%), and icon appearance
(16%), where layout refinements asked to rearrange elements on
the screen (e.g. “make this into a single row”), color refinements
asked to modify the color of elements (e.g. “lighten the button back-
ground color”), and icon refinements asked to either add or change
the appearance of an icon (e.g. “change the icon to a conversation
bubble”). Additionally, 13% of refinements were of a very general
nature, asking the system to help with ideation (“how about some
new fonts”), or to make broad subjective leaps (“make it pop”). In
this way, refinement seemingly served two different purposes: first,
to make directed edits when participants had specific edits in mind,

SquIRE: Interactive Ul Authoring via Slot QUery Intermediate REpresentations

Strongly Disagree .

Q1. SQUIRE was generally easy to use

Q2. | would like to use SQUIRE frequently

Q3. | imagine that most frontend developers could learn to use SQUIRE quickly
Q4. | found the version history and bookmarking features to be useful

Q5. | found Auto Expansion Mode helped me quickly generate designs

Q6. | found the LLM-generated slot suggestions to be useful

Q7. | liked having a component tree as an alternative representation
Q8. The component tree helped me decide what choices to make

Q9. The component tree helped me understand the Ul that was generated

Q10. SQUIRE helped me explore alternatives more than | usually would

Q11. SQUIRE helped me iterate on my Ul designs quickly

N

Q12. The refinement pane widgets helped me try different options quickly

Q13. | understood what part of my Ul would change as | modified the component tree
Q14. When | added a slot in the component tree, the result matched my intent

Q15. | understood what part of my Ul would change as | used the refinement pane
Q16. When | made a request using the refinement pane, the result matched my intent

Q17. The changes SQUIRE made were consistent across iterations

— -
o
IS
~
o
o o
S IS
&
IS

n

w w
N
~
(&)
(o)
~
w
N
-

w

UIST 25, September 28-October 1, 2025, Busan, Republic of Korea

Strongly Agree .

Disagree Neutral .

Agree .

[2]
=
°
°
@
Q

N
©
w o«
o ®

w
o
-
&~
o

> »
w »

o
w
®
©

w
o

w
o

»
BN

N
o
EN
w

-

[N)
| w

N
w

®
N
w

w
*
L -
N S -

IS
IS

Figure 8: Post-session questionnaire results. Questions are grouped into 4 focus areas from top to bottom: general sentiment, component
tree, exploration, and scoped interaction. Different bars indicate responses per rating, with averages on the right. Participants expressed
generally positive sentiment towards all features of SQUIRE. One participant did not answer Q13, so we only collected 10/11 responses.

and second, to come up with fresh ideas without the intention of a
specific appearance or goal.

6.1.2 Self-reported quality ratings. As participants performed their
tasks, they self-reported numerical ratings (1=worst, 5=best) to
judge the result of their most recent interaction at that point (this
appeared in the SQUIRE Ul as a set of rating buttons in the upper
right corner, which when pressed would save the rating to the
system trace). Note that because participants performed so many
actions over the course of a session, they were not expected to
provide ratings for every action, but rather periodically as they
saw fit.

Overall, participants rated 3 or above in 72% of cases, and rated
5 the most frequently of all (32%). However, in 28% of cases, par-
ticipants rated less than 3. Many of these low ratings happened
immediately after a change had failed to meet the participant’s
expectations of aesthetic quality. In the case of component tree
modifications, this often corresponded to a component choice that
the participant disagreed with. In the case of template refinements
in the Refinement Pane, this corresponded to cases where the re-
finement modified the template in a way that failed to meet the
participant’s quality bar, or otherwise failed to interpret and execute
the user’s query appropriately. While participants were generally
positive about the results they were able to achieve with SQUIRE,
participants also encountered limitations with respect to model
output quality that could be addressed with further advances in
model design knowledge [49, 50].

6.1.3 Usage styles. Although SQUIRE provides a more guided ex-
perience than chat-only tools, we inspected visualizations of in-
teraction traces to identify the degree to which SQUIRE might still
encourage a diversity of usage styles. Figure 7 shows visualiza-
tions of interaction traces that exhibit the three distinct patterns

of SQUIRE usage we identified, roughly in order of increasingly fre-
quent activity from top (P1) to bottom (P5). P1 generally preferred
building out the component tree to explore different options and
only deleted nodes once at the end of the task to prune unused
choices, which is consistent with the finding that deletion was gen-
erally infrequent (§6.1.1). P7 preferred more frequent use of the
Refinement Pane, submitting 2.6 times as many refinement requests
as P1 (42 vs 16). P5 submitted the most actions of all participants,
executing 1.9 times more actions than the median participant (480
vs 245), with frequent additions, removals, and refinement opera-
tions interspersed.

6.1.4 Questionnaire responses. Figure 8 shows a breakdown of
responses to the post-session questionnaire, which asked partici-
pants to indicate level of agreement with statements meant to elicit
subjective ratings of various aspects of SQUIRE. Participants were
also asked to give optional justification for their answers if they
wished. The questions span four major themes, shown grouped
from top to bottom in Figure 8: general sentiment about SQUIRE and
its individual features (Q1-Q6), effectiveness of the component tree
as a representation to aid comprehension (Q7-Q9), effectiveness of
SQUIRE as an exploration aid (Q10-Q12), and effectiveness of scoped
interactions (Q13-Q17).

General sentiment (Q1-Q6): Participants felt that SQUIRE was easy
to learn (Q3) and use (Q1), expressing positive sentiment towards
all features of SQUIRE (Q4-Q6): 5/6 of the questions in this group
received at least 9 ratings of Agree or Strongly Agree. However,
one question elicited more mixed responses: when asked whether
they would like to use SQUIRE frequently (Q2), 2 participants dis-
agreed and provided explanations in their questionnaire responses.
One participant felt that while SQUIRE was well-suited for creative

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

exploration, “there [were] people on the team who handle this re-
sponsibility” for them already (P5). Another participant felt that
the experience “felt alien compared to [their] normal flow for pro-
totyping or scaffolding a mobile UI” (P6), suggesting that lack of
familiarity may have been a barrier to adoption that might have
been overcome with more experience using the tool.

Component tree as a comprehension aid (Q7-Q9): Participants were
also generally positive regarding the visualization of the component
tree (DM3) as an aid to comprehension (Q7), both when deciding
which choices to make (Q8), and understanding the resulting gen-
erated UI (Q9). One participant who disagreed with Q8 volunteered
that the visualization became difficult to navigate as the tree became
too large (P6), suggesting room for usability improvements, such
as zoom or expand/collapse options to better aid focus on subsets
of the tree. Additionally, some participants who answered Q8 posi-
tively offered improvements to increase visual clarity and density
of the component tree further: removing excess horizontal indenta-
tion (P9), making textual descriptions less prominent (P4, P5), and
adding color coding to better portray visual correspondence with
the preview (P9).

SQUIRE as an exploration aid (Q10-Q12): The third group of ques-
tions (Q10-Q12) asked participants to indicate the degree to which
SouIRE helped them explore and iterate (DM2). While all questions
elicited high ratings, participants were particularly positive about
the ephemeral controls (Q12), with 5 participants indicating strong
agreement. On reviewing responses, we found that participants
praised this feature for its accuracy (P1) and the way it encour-
aged quick tinkering (P11). We will have more to say on this point
in §6.2.4.

Scoped interaction (Q13-Q17): The last group of questions elicited
participants’ sentiment on whether the scoped nature of component
tree and Refinement Pane interations were effective at conveying
changes (Q13,015), and whether those changes actually satisfied
their intents (Q14,Q16). In both cases, the majority of participants
expressed positive sentiment, indicating that participants generally
felt that SQUIRE gave them a sense of control over changes (DM1).
We elaborate on this point further in §6.2.4.

6.2 Qualitative Results

We conducted a lightweight thematic analysis of transcribed study
recordings to identify common themes.

6.2.1 Envisioning design using sample data. Participants noted that
starting from sample data was a natural and effective approach
for designing user interfaces, as “a lot of times we are constrained
by what data is available to us so if you want to develop a new
view... [you have to think] data first and build the views around
it” (P8). By starting with a data-first approach, SQUIRE aided the
process of coming up with possible designs, as it made it “easier
to envision” possibilities for rendering data (P6). Participants also
observed that the explicit representation of data in SQUIRE gave
them more control over the decision-making process than chat-
style assistants: “instead of the model generating the data and
then making decisions based on that, at least you have time to
intervene” and guide the model towards intended behavior (P10).
One participant enjoyed the data-first approach enough that they
proposed as a future enhancement an interactive flow for guiding

Alan Leung, Ruijia Cheng, Jason Wu, Jeffrey Nichols, and Titus Barik

users towards authoring project descriptions: “Maybe prompting
the user to say, hey, what do you want to create? Cool. Well, can you
provide me some data? Cool. Or maybe this is missing or something
like that” (P10).

6.2.2 Proactive prediction of design possibilities. In contrast to most
chat-based generative tools where the Al reactively responds to
user requests, several participants expressed that SQUIRE would
seemingly anticipate their intent and suggest custom slots that
they had not yet verbalized: “So it’s doing a pretty good job of
anticipating the kinds of things that I might want to put on, and it
adds more as I go, which is nice.” (P3) Some participants indicated
SQUIRE was so effective at suggesting custom slots that it was
"kind of reading my mind" and seemingly clairvoyant in the way it
“worked like magic” (P9). In addition to predicting the participants’
non-verbalized intent, SQUIRE sometimes offered suggestions that
led users to explore possibilities they had not yet even considered
(DM2), thus acting as a creative aid: “Often times it would suggest
components I hadn’t yet thought of” (P5).

Mirroring their feedback toward slot suggestions, participants
stated that the Refinement Pane should have also incorporated
more proactive suggestions: “when you double click something,
it [should] sort of maybe already present you with some options
on like what you’d want to do” (P2) and “similar to how you give
the suggestions for slots, you [should] give some suggestions for
instructions as well” (P8).

6.2.3 Accelerating iteration and exploration rather than automating
design. Participants noted that current generation Al assistants like
ChatGPT or v0 seemed to be good for automating the process of
generating project skeletons, but made it hard to iterate further on
results, with one participant noting “they’ll just generate a whole
application and then come up with some sort of a UL” Further
iteration through additional prompting was a struggle when at-
tempting to achieve more targeted refinement: “after they generate
you could make smaller modifications. But sometimes it struggles
to do that” (P10).

In comparison, participants enjoyed that SQUIRE offered a differ-
ent, more iterative and exploratory interaction (DM2): “[tools like
ChatGPT] create the skeleton in a way is how I view it, whereas
here it feels like very much a visual exploration” (P5). One par-
ticipant pointed out that SQUIRE even felt like an improvement
over visual mockup tools like Sketch “because it would actually
help prototype different layouts so much quicker...it’s a step above
like regular Sketch type stuftf” (P1) because it creates high-fidelity
designs through code.

As a counterpoint, however, one participant noted that SQUIRE
seemed to serve better as a complement, rather than a replacement:
“I think SQUIRE was better at exploration of different visual options
and interactively modifying styles while others feel more suited
for spinning up web applications and implementing features” (P5).
Indeed, some participants noted that although they may have been
satisfied visually, there was remaining concern that the output was
not in their preferred implementation framework: “many teams are
tightly bound to certain frontend libraries like React/Angular and
CSS libraries; not sure how well a tool like this can integrate into
an application that is built with these other libraries” (P1).

SquIRE: Interactive Ul Authoring via Slot QUery Intermediate REpresentations

6.2.4 Building confidence in making changes through control. Partic-
ipants noted that they felt confident when making changes because
SQuIRE provided explicit controls (DM1): “Controlled yeah more
controlled, like you’re more sure what’s gonna happen. I think that
this is a better approach to do it...controlled to a particular region
or place to implement is a very nice way, I think, to be very confi-
dent” (P8). Another participant noted that the ability to precisely
change elements of the component tree felt like missing functional-
ity in other tools: “Now that I use it more, I think that’s what[’s]
missing in tools like v0.dev or things I use, because it’s very hard
to just like modify a part of the whole component tree” (P8). This
point was reinforced by another participant who noted that tools
like ChatGPT provide no special features for making modifications
other than additional prompting, whereas with SQUIRE “you have
more control of making those modifications afterwards” (P10). An-
other participant felt that it increased their confidence that SQUIRE
would do what they asked: “SQUIRE generally didn’t go off the rails
like most other generative Al tools I've used or seen” (P11).

As a result, SQUIRE seemingly encouraged participants to tin-
ker frequently without worrying about implementing and undoing
unfruitful explorations (DM2). For example, one participant men-
tioned that “being able to quickly choose the color like this, like
just tinker with all that, [is] super easy" whereas “if you’re just
dealing with raw code, as I said, like it’s not as quick to be able to
do this sort of tinkering" (P11). In addition to reducing the friction
to make changes, another participant observed that the tool seemed
to encourage exploration of new ideas by removing risk: “I could
take that risk anytime to like explore new design types...It’s like
a fail-fast fashion where I can change fast [without] rewriting the
whole thing again” (P9). This sense of risk-free exploration also
provided the participants a sense of freedom: “It gives you that
autonomy like, ok, there are other ways how you can show this UL
and you can risk with it” (P9).

Still, while some preferred the guided nature of SQUIRE, one
participant did mention wishing for a way to escape into a more
free-form prompting interaction: "I think it’s a little bit more guided
experience where like, for example, like if I interact with an LLM,
it’s mostly through their prompt. This type of interaction is new.
I haven’t worked with it before, where you have a little bit more,
you have more knobs and like a tree structure to be able to work
with. But I kept on, it looks like I kept on still trying to interact
with the LLM by selecting elements on the Preview Pane and then
instructing what to do" (P10).

Study Limitations. User study participants had no prior experi-
ence with SQUIRE and were given only 20 minutes per task. This
limited our ability to evaluate SQUIRE’s capacity to scale to larger
and more complex screens. While a comprehensive evaluation of
scalability is the subject of future work, we refer to Figure 9 in
the Appendix for a sample of screens that qualitatively convey the
variety of screens possible with SQUIRE.

A controlled user study is a low-stakes environment in which
decisions have few real-world consequences, so participants may
have been less demanding when accepting SQUIRE’s suggestions
than they might have been in their day-to-day work. A future in-
situ study could evaluate whether a more natural setting affects
developers’ experience with SQUIRE.

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

7 Discussion and Future Work

We now discuss the broader implications of our findings and po-
tential future directions for rapid prototyping tools.

Combining scoped and unscoped affordances. The developers
in our user study reported confidence that SQUIRE would do as
intended when they made changes, indicating that the explicitly
scoped interactions (slot queries and refinement queries) were suc-
cessful in helping developers intuitively understand the region of
the UI and the aesthetic aspects of the UI (in the case of refinement
queries) that would be changed. Still, while these findings affirmed
the value of scoped affordances, we note that prompting for di-
rected changes is only one way in which developers use generative
assistants. Indeed, we saw in our user study that participants some-
times wanted to riff with the model and see what happened when
providing very general and ambiguous queries (“make it pop”) in
the hopes of being inspired serendipitously. This points to a need
for future rapid prototyping tools to combine both scoped and
unscoped interactions that serve different purposes—one for con-
trolled exploration through guided modification, and another for
radical inspiration through larger leaps—where a future challenge
will be to develop representations that are compatible with both.
Combining direct manipulation and conversational inter-
faces. In contrast to direct manipulation design tools [14, 40],
SoUIRE employs a predominantly conversational interface. How-
ever, conversational and direct manipulation approaches need not
be mutually exclusive and offer different advantages: natural lan-
guage is expressive but potentially ambiguous, while direct manip-
ulation is precise but limited to specific gestures. Future work could
investigate how SQUIRE could be extended to support some forms of
direct manipulation. For example, some participants (P2,P4,P5,P8)
expressed a desire for drag-and-drop to rearrange components, a
feature that could potentially be implemented via programmatic
tree-rewriting. For direct manipulations where the users’ goals
are more complex, programming-by-demonstration [8] may be a
promising direction to infer intent, as it has been applied success-
fully in the domains of graphic design [19] and visualization [38].
Grounding creation in known requirements. In SQUIRE, de-
velopers provide initial context in the form of project descriptions
that include sample data. Our user study participants enjoyed this
aspect of the tool, indicating that it fits naturally in cases where
project requirements impose constraints on what data is available.
However, it is still a limitation of SQUIRE that developers must pay
the cost to provide sample data up front. In cases where this data is
already available, this cost may be minimal, but in cases where it
is not, developers must spend time to create it themselves. For our
user study, we synthesized this sample data using an LLM (gpt-40)
and estimate that each required less than half an hour of effort to
create, which is a small but still non-negligible amount of effort.
Future work should investigate ways to integrate synthetic data
generation to reduce the burden on the user.

While SQUIRE employs generative models, we note that classical
approaches to model-based UI have previously investigated deter-
ministic approaches for the related task of component selection
from specifications [55]. Future work may combine deterministic
and probabilistic techniques into one system, where deterministic
rules are used for fast matching from data to compatible elements,

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

while probabilistic models may be used to make higher-level deci-
sions that require more sophisticated design and world knowledge.

Thinking further, we note that providing sample data is only
one instance of a broader class of potential techniques to support
grounded authoring of UI (i.e. techniques to steer models toward a
more constrained class of intended outputs). One promising direc-
tion was suggested by two participants (P2,P8), who noted that it
would be useful for them to provide predefined stylesheets, brand-
ing guidelines, or other design patterns as a way to tailor outputs
to their particular team’s needs. Future work should explore such
input modalities that both fit within developers’ existing practices
and are lightweight enough for developers so as not to be onerous
to produce. Specialized tools for generating this form of context
may be another promising area of inquiry.

Connection to overview+detail interfaces. SQUIRE’s user in-
terface adopts a variant of the overview+detail pattern [20], with
the component tree and preview providing overview and detail,
respectively. In SQUIRE, the overview granularity is not dynamically
adjustable, which limits users’ ability to focus on subtrees within
more complex component trees: recall that one participant (P6)
suggested adding zoom or expand/collapse to aid focus (§6.1.4).
Recent work on malleable overview-detail interfaces [28] points
to the benefits of dynamically tunable overviews, of which zoom
and expand/collapse are only two possibilities. Future work should
investigate how these interactions might aid exploration in complex
designs, while also evaluating potential trade-offs around increased
context-switching and reduced spatial awareness.
Productionizing prototypes. Some participants (P1,P6,P10,P11)
voiced concern whether it would be difficult to integrate what they
had built in SQUIRE into their existing codebases, as development
teams’ technology stacks vary in their choice of third-party libraries
and UI frameworks. For the purpose of this paper, we implemented
SQUIRE to support standard HTML, CSS, and JavaScript to minimize
dependencies and reduce necessary domain knowledge for users.
However, the conceptual framework proposed in this paper remains
theoretically compatible with feature-rich frameworks like React,
Vue.js, or Svelte, as they are still fundamentally based on nesting
of components with encapsulated behavior and styles, albeit with
their own unique engineering practicalities.

SoUIRE makes a simplifying assumption to fetch backend data
using JSONPath queries serviced by the SQUIRE backend itself. This
is one area where the resulting code would need further editing to
be integrated into an existing codebase for further development,
either by supporting the JSONPath query interface, or by replacing
datum instances with another data access mechanism. SQUIRE could
be extended with support for external REST APIs or other backend
request conventions by supplementing the data schema with exter-
nal resource URLs and revising the datum instance implementation
to query to those external resources instead.

Going beyond visual exploration. SQUIRE is a visual prototyping
tool—it only generates one screen at a time and does not generate
interaction-specific code, such as transitions, animations, or nav-
igation to other screens. Based on the results of our user studies,
we have found that developers still find the supported function-
ality highly useful, but future work should investigate support

Alan Leung, Ruijia Cheng, Jason Wu, Jeffrey Nichols, and Titus Barik

for multi-screen flows and dynamic behavior, along with corre-
sponding extension to provide scoped exploration across those
new dimensions.

8 Conclusion

We present a system for user interface development called SQUIRE
designed for incremental and interactive prototyping of mobile
web user interfaces. As the central concept in SQUIRE, we pro-
pose a domain-specific representation called SQUIREIR for encod-
ing UI structure as a high level composition of components that
can be explored and refined through slot queries and template
refinement. We report a user study with experienced frontend
developers that demonstrates SQUIRE’s ability to support explo-
ration, refinement, and comprehension of generated UL Our find-
ings reveal future opportunities for tools that incorporate scoped UI
exploration and refinement.

References

[1] Anthropic. 2025. Claude Artifacts. https://support.anthropic.com/en/articles/
9487310-what-are-artifacts-and-how-do-i-use-them. Accessed: 2025-04-04.
Christian Bird, Denae Ford, Thomas Zimmermann, Nicole Forsgren, Eirini
Kalliamvakou, Travis Lowdermilk, and Idan Gazit. 2023. Taking Flight with
Copilot: Early insights and opportunities of Al-powered pair-programming tools.
Queue 20, 6 (Jan. 2023), 35-57.

[3] Bill Buxton. 2007. Sketching User Experiences: Getting the Design Right and the
Right Design. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[4] Gaélle Calvary, Joélle Coutaz, Laurent Bouillon, M. Florins, Quentin Limbourg,
L. Marucci, Fabio Paterno, C. Santoro, N. Souchon, David Thevenin, and Jean
Vanderdonckt. 2002. The CAMELEON reference framework.

[5] Xiang 'Anthony’ Chen, Tiffany Knearem, and Yang Li. 2025. The GenUI Study:
Exploring the Design of Generative UI Tools to Support UX Practitioners and
Beyond. In Proceedings of the 2025 ACM Designing Interactive Systems Conference
(DIS °25). Association for Computing Machinery, New York, NY, USA, 1179-1196.

[6] Ruijia Cheng, Titus Barik, Alan Leung, Fred Hohman, and Jeffrey Nichols. 2024.
BISCUIT: Scaffolding LLM-Generated Code with Ephemeral Uls in Computational
Notebooks. In 2024 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). 13-23.

[7] Design Council. 2004. Framework for Innovation. https://www.designcouncil.
org.uk/our-resources/framework-for-innovation/

[8] Allen Cypher. 1993. Watch What I Do. MIT Press.

[9] Steven P Dow, Alana Glassco, Johnathan Kass, Melissa Schwarz, and Scott R.
Klemmer. 2009. The Effect of Parallel Prototyping on Design Performance, Learning,
and Self-Efficacy. Technical Report. Stanford University.

[10] Steven P. Dow, Alana Glassco, Jonathan Kass, Melissa Schwarz, Daniel L.
Schwartz, and Scott R. Klemmer. 2011. Parallel prototyping leads to better design
results, more divergence, and increased self-efficacy. ACM Trans. Comput.-Hum.
Interact. 17, 4 (Dec. 2011).

[11] Peitong Duan, Chin-Yi Cheng, Gang Li, Bjoern Hartmann, and Yang Li. 2024.
UICrit: Enhancing Automated Design Evaluation with a UI Critique Dataset. In
Proceedings of the 37th Annual ACM Symposium on User Interface Software and
Technology (UIST ’24). Association for Computing Machinery, New York, NY,
USA.

Peitong Duan, Jeremy Warner, Yang Li, and Bjoern Hartmann. 2024. Generating

Automatic Feedback on UI Mockups with Large Language Models. In Proceed-

ings of the CHI Conference on Human Factors in Computing Systems (CHI °24).

Association for Computing Machinery, New York, NY, USA.

Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhilasha Ravichander, Eduard

Hovy, Hinrich Schiitze, and Yoav Goldberg. 2021. Measuring and Improving

Consistency in Pretrained Language Models. Transactions of the Association for

Computational Linguistics 9 (2021), 1012-1031.

Figma. 2025. Figma. https://figma.com. Accessed: 2025-07-03.

Krzysztof Gajos and Daniel S. Weld. 2004. SUPPLE: automatically generating

user interfaces. In Proceedings of the 9th International Conference on Intelligent

User Interfaces (IUI '04). Association for Computing Machinery, New York, NY,

USA, 93-100.

[16] John D. Gould and Clayton Lewis. 1985. Designing for usability: key principles
and what designers think. Commun. ACM 28, 3 (March 1985), 300-311.

[17] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek
Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex
Vaughan, et al. 2024. The Llama 3 Herd of Models. arXiv preprint arXiv:2407.21783
(2024).

[2

[12

[13

jperuny
e

https://support.anthropic.com/en/articles/9487310-what-are-artifacts-and-how-do-i-use-them
https://support.anthropic.com/en/articles/9487310-what-are-artifacts-and-how-do-i-use-them
https://www.designcouncil.org.uk/our-resources/framework-for-innovation/
https://www.designcouncil.org.uk/our-resources/framework-for-innovation/
https://figma.com

SquIRE: Interactive Ul Authoring via Slot QUery Intermediate REpresentations UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

[18] Bjérn Hartmann, Sean Follmer, Antonio Ricciardi, Timothy Cardenas, and Scott R.
Klemmer. 2010. d.note: revising user interfaces through change tracking, annota-

Computer Graphics 26, 1 (2020), 461-471.
[39] Jaejung Seol, Seojun Kim, and Jaejun Yoo. 2025. PosterLlama: Bridging Design

tions, and alternatives. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI ’10). Association for Computing Machinery, New
York, NY, USA, 493-502.

Brian Hempel, Justin Lubin, and Ravi Chugh. 2019. Sketch-n-Sketch: Output-
Directed Programming for SVG. In Proceedings of the 32nd Annual ACM Sym-
posium on User Interface Software and Technology (UIST °19). Association for
Computing Machinery, New York, NY, USA, 281-292.

Kasper Hornbaek and Erik Frekjeer. 2001. Reading of electronic documents: the
usability of linear, fisheye, and overview+detail interfaces. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI ’01). Association
for Computing Machinery, New York, NY, USA, 293-300.

David G Jansson and Steven M Smith. 1991. Design fixation. Design studies 12, 1
(1991), 3-11.

Won Chul Kim and James D. Foley. 1993. Providing high-level control and
expert assistance in the user interface presentation design. In Proceedings of the
INTERACT ’93 and CHI *93 Conference on Human Factors in Computing Systems
(CHI ’93). Association for Computing Machinery, New York, NY, USA, 430-437.
Kristian Kolthoff, Felix Kretzer, Lennart Fiebig, Christian Bartelt, Alexander
Maedche, and Simone Paolo Ponzetto. 2024. Zero-Shot Prompting Approaches for
LLM-based Graphical User Interface Generation. arXiv preprint arXiv:2412.11328
(12 2024).

Yoonjoo Lee, Kihoon Son, Tae Soo Kim, Jisu Kim, John Joon Young Chung, Eytan
Adar, and Juho Kim. 2024. One vs. Many: Comprehending Accurate Information
from Multiple Erroneous and Inconsistent Al Generations. In Proceedings of the
2024 ACM Conference on Fairness, Accountability, and Transparency (FAccT °24).
Association for Computing Machinery, New York, NY, USA, 2518-2531.

Vivian Liu and Lydia B Chilton. 2022. Design Guidelines for Prompt Engineering
Text-to-Image Generative Models. In Proceedings of the 2022 CHI Conference
on Human Factors in Computing Systems (CHI °22). Association for Computing
Machinery, New York, NY, USA.

Yuwen Lu, Alan Leung, Amanda Swearngin, Jeffrey Nichols, and Titus Barik. 2025.
Misty: UI Prototyping Through Interactive Conceptual Blending. In Proceedings
of the 2025 CHI Conference on Human Factors in Computing Systems (CHI °25).
Association for Computing Machinery, New York, NY, USA.

Ping Luo, Pedro Szekely, and Robert Neches. 1993. Management of interface
design in humanoid. In Proceedings of the INTERACT 93 and CHI *93 Conference
on Human Factors in Computing Systems (CHI °93). Association for Computing
Machinery, New York, NY, USA, 107-114.

Bryan Min, Allen Chen, Yining Cao, and Haijun Xia. 2025. Malleable Overview-
Detail Interfaces. In Proceedings of the 2025 CHI Conference on Human Factors in
Computing Systems (CHI "25). Association for Computing Machinery, New York,
NY, USA.

Kevin Moran, Carlos Bernal-Cardenas, Michael Curcio, Richard Bonett, and
Denys Poshyvanyk. 2020. Machine Learning-Based Prototyping of Graphical
User Interfaces for Mobile Apps. IEEE Transactions on Software Engineering 46, 2
(2020), 196-221.

Kevin Moran, Boyang Li, Carlos Bernal-Cardenas, Dan Jelf, and Denys Poshy-
vanyk. 2018. Automated reporting of GUI design violations for mobile apps. In
Proceedings of the 40th International Conference on Software Engineering (ICSE
’18). Association for Computing Machinery, New York, NY, USA, 165-175.
Mozilla. 2025. Using shadow DOM. https://developer.mozilla.org/en-US/docs/
Web/API/Web_components/Using_shadow_DOM. Accessed: 2025-03-10.
Mozilla. 2025. Web Components. https://developer.mozilla.org/en-US/docs/Web/
API/Web_components. Accessed: 2025-03-10.

D.R. Olsen. 1989. A programming language basis for user interface. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (CHI °89).
Association for Computing Machinery, New York, NY, USA, 171-176.

OpenAl 2025. ChatGPT. https://chat.openai.com/chat. Accessed: 2025-03-31.
OpenAl Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge
Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam
Altman, Shyamal Anadkat, et al. 2023. GPT-4 Technical Report. arXiv preprint
arXiv:2303.08774 (03 2023).

AR. Puerta. 1997. A model-based interface development environment. IEEE
Software 14, 4 (1997), 40-47.

Angel Puerta, Michael Micheletti, and Alan Mak. 2005. The UI pilot: a model-
based tool to guide early interface design. In Proceedings of the 10th International
Conference on Intelligent User Interfaces (IUI ’05). Association for Computing
Machinery, New York, NY, USA, 215-222.

Arvind Satyanarayan, Bongshin Lee, Donghao Ren, Jeffrey Heer, John Stasko,
John Thompson, Matthew Brehmer, and Zhicheng Liu. 2020. Critical Reflections
on Visualization Authoring Systems. IEEE Transactions on Visualization and

Ability of Language Model to Content-Aware Layout Generation. In Computer
Vision — ECCV 2024, Ale§ Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky,
Torsten Sattler, and Giil Varol (Eds.). Springer Nature Switzerland, Cham, 451~
468.

Sketch. 2025. Sketch. https://sketch.com. Accessed: 2025-07-03.

Hari Subramonyam, Roy Pea, Christopher Pondoc, Maneesh Agrawala, and
Colleen Seifert. 2024. Bridging the Gulf of Envisioning: Cognitive Challenges in
Prompt Based Interactions with LLMs. In Proceedings of the 2024 CHI Conference
on Human Factors in Computing Systems (CHI "24). Association for Computing
Machinery, New York, NY, USA.

Amanda Swearngin, Chenglong Wang, Alannah Oleson, James Fogarty, and
Amy J. Ko. 2020. Scout: Rapid Exploration of Interface Layout Alternatives
through High-Level Design Constraints. In Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems (CHI 20). Association for Computing
Machinery, New York, NY, USA, 1-13.

Pedro Szekely, Ping Luo, and Robert Neches. 1992. Facilitating the exploration
of interface design alternatives: the HUMANOID model of interface design. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(CHI ’92). Association for Computing Machinery, New York, NY, USA, 507-515.
Zecheng Tang, Chenfei Wu, Juntao Li, and Nan Duan. 2024. LayoutNUWA:
Revealing the Hidden Layout Expertise of Large Language Models. In The Twelfth
International Conference on Learning Representations.

UXArchive. 2025. UXArchive. https://uxarchive.com. Accessed: 2025-04-09.
Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. 2022. Expectation
vs. Experience: Evaluating the Usability of Code Generation Tools Powered by
Large Language Models. In Extended Abstracts of the 2022 CHI Conference on
Human Factors in Computing Systems (CHI EA "22). Association for Computing
Machinery, New York, NY, USA.

Jean M. Vanderdonckt and Francois Bodart. 1993. Encapsulating knowledge for
intelligent automatic interaction objects selection. In Proceedings of the INTERACT
’93 and CHI ’93 Conference on Human Factors in Computing Systems (CHI ’93).
Association for Computing Machinery, New York, NY, USA, 424-429.

Vercel. 2025. Vercel v0. https://v0.dev. Accessed: 2025-03-31.

Jason Wu, Yi-Hao Peng, Xin Yue Amanda Li, Amanda Swearngin, Jeffrey P
Bigham, and Jeffrey Nichols. 2024. UIClip: A Data-driven Model for Assessing
User Interface Design. In Proceedings of the 37th Annual ACM Symposium on
User Interface Software and Technology (UIST °24). Association for Computing
Machinery, New York, NY, USA.

Jason Wu, Eldon Schoop, Alan Leung, Titus Barik, Jeffrey Bigham, and Jeffrey
Nichols. 2024. UICoder: Finetuning Large Language Models to Generate User
Interface Code through Automated Feedback. In Proceedings of the 2024 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), Kevin Duh, Helena Gomez,
and Steven Bethard (Eds.). Association for Computational Linguistics, Mexico
City, Mexico, 7511-7525.

Mingyue Yuan, Jieshan Chen, Yongquan Hu, Sidong Feng, Mulong Xie, Gelareh
Mohammadi, Zhenchang Xing, and Aaron Quigley. 2024. Towards Human-Al
Synergy in UI Design: Enhancing Multi-Agent Based UI Generation with Intent
Clarification and Alignment. arXiv preprint arXiv:2412.20071 (2024).

[52] J.D. Zamfirescu-Pereira, Eunice Jun, Michael Terry, Qian Yang, and Bjoern Hart-

mann. 2025. Beyond Code Generation: LLM-supported Exploration of the Pro-
gram Design Space. In Proceedings of the 2025 CHI Conference on Human Factors
in Computing Systems (CHI °25). Association for Computing Machinery, New
York, NY, USA, 1-17.

[53] J.D.Zamfirescu-Pereira, Heather Wei, Amy Xiao, Kitty Gu, Grace Jung, Matthew G

Lee, Bjoern Hartmann, and Qian Yang. 2023. Herding AI Cats: Lessons from De-
signing a Chatbot by Prompting GPT-3. In Proceedings of the 2023 ACM Designing
Interactive Systems Conference (DIS °23). Association for Computing Machinery,
New York, NY, USA, 2206-2220.

J.D. Zamfirescu-Pereira, Richmond Y. Wong, Bjoern Hartmann, and Qian Yang.
2023. Why Johnny Can’t Prompt: How Non-AI Experts Try (and Fail) to Design
LLM Prompts. In Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems (CHI "23). Association for Computing Machinery, New York,
NY, USA.

Brad Vander Zanden and Brad A. Myers. 1990. Automatic, look-and-feel indepen-
dent dialog creation for graphical user interfaces. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI °90). Association for
Computing Machinery, New York, NY, USA, 27-34.

A Appendix

https://developer.mozilla.org/en-US/docs/Web/API/Web_components/Using_shadow_DOM
https://developer.mozilla.org/en-US/docs/Web/API/Web_components/Using_shadow_DOM
https://developer.mozilla.org/en-US/docs/Web/API/Web_components
https://developer.mozilla.org/en-US/docs/Web/API/Web_components
https://chat.openai.com/chat
https://sketch.com
https://uxarchive.com
https://v0.dev

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

Table 1: The SQUIRE component library.

Component Description

Button A button with a label.

Caption A caption for describing a corresponding image or other media.

Carousel A horizontally scrollable collection of images or cards.

Checkmark A check mark icon for indicating success or acceptance based on a boolean value.

Circularlmage A single image with a circular form factor.

Date A date formatted to be human-readable.

Form A form for collecting user input.

Grid Use a Grid to show several items of the same type to the user. Generally, a grid item is a single image or
visually distinctive element without much text. The user may click on it to view more details about it.

Heading A heading that shows text prominently. A good choice for titles and other section headers.

Hyperlink A link to another page or resource.

Icon An icon.

InlineList Use an InlineList to present several items of the same type to the user in a horizontal arrangement.

Literal A hard-coded string that never changes.

Login A login form.

Navigation A navbar on the side with links to other pages within the app.

Option A selectable option amongst many.

OptionGroup A group of selectable options. Only one may be selected at a time.

Panel A panel is a visually distinct group of elements that are displayed together. They are surrounded by a
border and padding to distinguish them from surrounding elements.

Paragraph A paragraph of text. A good choice for text content that consists of several sentences.

Password A password input field.

PlayControls Play controls for video or audio player.

ProfilePage A page for viewing a user profile and associated settings.

ProgressBar A progress bar indicator. This is a horizontal bar that is filled between 0 and 100.

ProgressRing A circular progress indicator. Given a numeric value between 0 and 100, this element displays a ring with
a percentage of the ring filled in.

Score A badge for showing numerical scores, where higher is better. Useful for visualizing quantitative values.

Screen The top level of an individual screen.

SearchBar A search box for finding results.

SquareImage A single image with a square form factor.

TabBar If there are several distinct views in the program, then use a tab bar to separate them into separate tabs
that can be selected by the user.

TallCard Use a TallCard to represent a single item out of many. The contents are arranged in a vertical layout with
an image at the top.

TextInput A text input field.

Toggle A setting toggle that can be either on or off based on its boolean value.

VerticalList Use a VerticalList to present several homogeneous items in a vertical arrangement.

Video A video player.

WideCard Use a WideCard to represent a single item out of many. The contents are arranged in a horizontal layout

with an image on the side.

Alan Leung, Ruijia Cheng, Jason Wu, Jeffrey Nichols, and Titus Barik

SquIRE: Interactive Ul Authoring via Slot QUery Intermediate REpresentations UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

: Profile
Technology @ Food

Travel ¥ Fitness

coffeelover »
Gadgets Music Sign in to the app
Pl i Science Username or email address Favorites
Crafts ~ Gaming
¥ Wishlists >
Password Forgot password?
Tech Enthusiast ¢ Top Picks N
Y¢ Exclusive Offers >

Scenic Challenging Wildlife 2 o
9ing Privacy Policy ~ Terms of Service

The Skyline Trail offers breathtaking views Account Settings

of the surrounding mountains and valleys.
This well-marked trail winds through dense
forests and opens up to stunning vistas. It's
a favorite among seasoned hikers looking
for a challenge.

Enable Notifications

Private Profile

Dark Mode

~] L Two-Factor Authentication

Abstract Famous Paintings and Art Techniq ’
Their Stories Beginners Email Alerts

R hiker123

Amazing trail with stunning
views. A bit challenging but
worth it!

SMS Alerts

Auto-Update App

B8 a -]
\e naturelover Subscriptions Notifications Settings

Save Payment Details

[FE T

888848848

Figure 9: Sample app screens created with SQUIRE. These screens depict the following use cases: hiking trail details, social video
streaming, app log in, and profile preferences (left-to-right). The first was created by a participant (P7) during the user study, while the rest
were created by the authors to demonstrate a broader variety of screens beyond the user study setting.

	Abstract
	1 Introduction
	2 Example Squire Usage
	3 Related Work
	4 The Squire System
	4.1 Design Motivations
	4.2 SquireIR: Language Definition
	4.3 Squire: System Design

	5 User Study
	6 Results
	6.1 Quantitative Results
	6.2 Qualitative Results

	7 Discussion and Future Work
	8 Conclusion
	References
	A Appendix

