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Figure 1: SelfSync gestures can unlock a gesture interface or immediately trigger an action through coordinated body move-
ments such as hand and head gestures (A, B), hand and leg gestures (C), and head and leg gestures (D, E).

ABSTRACT
SelfSync enables rapid, robust initiation of a gesture interface us-
ing synchronizedmovement of different body parts. SelfSync is the
gestural equivalent of a hotword such as OK-Google in a speech in-
terface and is enabled by the increasing trend where a user wears
two or more wearables, such as a smartwatch, wireless earbuds, or
a smartphone. In a user study comparing five potential SelfSync
gestures in isolation, our system averages 96%, 98% and 88% for
user dependent, user adapted, and user independent accuracy, re-
spectively. For when the user has a phone in a pocket and a smart-
watch, we suggest twisting the hand about the wrist while moving
the leg with the phone in synchrony left and right. When the user
has a head worn device and a smartwatch, we suggest twisting the
hand while twisting the head left and right.

CCS CONCEPTS
• Human-centered computing → Gestural input.

KEYWORDS
wearable computing; interaction; synchronous gestures; smartwatches;
head-worn displays
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1 INTRODUCTION
Many aspects of mobile and wearable interaction rely on accurate
and reliable input initiation. For example, most voice assistants use
certain trigger phrases (e.g., “OK Google”) to activate functional-
ity. Other wearables that dim or disable the screen require users to
“unlock” the device before use. However, these activation mech-
anisms may not be socially acceptable or usable in many cases
where the user is situationally impaired. For example, activating
voice assistants in public is difficult and can be socially awkward.
Also, smartwatches can occupy both hands and require conspicu-
ous movement to unlock. Alternatively, many “gesture delimiter”
approaches, where a special unlock gesture indicates the interface
should look for a subsequent gestural command, can require dis-
tinctive gestures that draw significant attention, as the gestures
must be differentiable from everyday motion with very low false
positive rates [27]. Finally, speech-based triggers are not socially
acceptable in many cases and can cause the undesirable result of
simultaneously activating nearby devices.

Our approach to interface initiation can take advantage of com-
binations of wearable devices commonly worn today (wireless ear-
buds, smartphone, smartwatch, etc.) and coordinates their input
for gesture recognition. Specifically, we explore self-synchronous
body-based gestures for the purpose of accurate and robust input
initialization using the SelfSync gesture interface. We first present
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SelfSync in the context of related work on subtle activation ges-
tures and social acceptability. We describe the design and imple-
mentation of the SelfSync gesture interaction and the underlying
recognition method. Our system is then evaluated in an offline
and online experiment, quantifying accuracy, speed, task work-
load, and social acceptability.

2 RELATEDWORK
2.1 Activation Gesture Input
Gesture recognition systems often use gestural delimiters to seg-
ment different portions of user interaction [16]. These “activation”
gestures must have very low false-positive rates while retaining
high reliability and detection accuracy [27]. Systems such asWhack
and DoubleFlip introduce gestures that are easily distinguishable
from other motion when characterized by accelerometry data [12,
27]. Gesture On explores touchscreen-based gesture recognition
on locked mobile devices in “standby” mode without needing to
toggle between modes of interaction [20]. A similar concept of ini-
tializing a locked device to a targeted application state has also
been explored on tablets [29]. Activation gestures for wearable de-
vices such as smartwatches and smartglasses employ similar tech-
niques. WristRotate is a personalized motion delimiter for wrist-
worn devices [15], and Google Glass uses a head-tilting gesture
for device waking. Activation gestures using non-voice acoustics
[25] and gaze-tracking have also been explored [23].

SelfSync creates an activation gesture input method which is
sufficiently robust to false triggering such that it is adequate for
daily usage even when providing multiple commands.

2.2 Synchronous Gestures and Motion
Correlation

Detecting correlatedmovement betweenmultiple devices has been
explored as a natural mechanism for pairing and initiating infor-
mation transfer. Hinckley investigated correlating the sensor val-
ues of multiple tablet computers as a distributed sensing method
to detect gestures for initiating information transfer and changing
display settings [11]. Other work enabling device pairing [40] and
authentication [18, 37] have found the explicit, localized interac-
tion as beneficial for such applications.

Velloso et al. used correlated movement as an input method for
wearable and small form-factor devices, where users express intent
for selecting an item by mimicking the movement of a cursor that
orbits the item [34]. Some synchronous motion eye interfaces take
advantage of the natural tendency for users’ eyes to track mov-
ing targets of interest [7, 8, 31, 35, 36]. Selection of both virtual
UI elements and real-world objects can be performed by tracking
body-based synchronous gestures as well [3, 4]. Finally, synchro-
nous gestures have recently been explored as hand gestures for
subtle control and one-handed smartwatch input [9, 24, 38, 39].

In contrast to these previous systems, SelfSync enables motion-
correlation interfaceswithout external stimuli such as periodic sounds
or visual elements. Such a system may reduce or eliminate the vi-
sual distraction of moving cursors, improve recognition accuracy,
decrease training, increase speed and reduce the cognitive load
caused by matching an external rhythm.

Figure 2: SelfSync gesture set abbreviations

2.3 Subtle Input Interfaces
The usefulness and adoption of gesture interfaces are highly de-
pendent on the social acceptability of the gestures. Previous re-
search evaluated the social acceptability of various device-based
and body-based gestures in common settings and found that par-
ticipants strongly preferred subtle gestures that required small and
unobtrusivemotion [26]. To this end, input interfaces have been de-
veloped that seek tominimize the amount of discerniblemovement
required to trigger the system. Costanza et al. explored the use
of an input device based on the electromyographic (EMG) signal
for motionless interaction [5]. The bone-conduction microphone
used in Bitey and the Outer-Ear Interface (OEI) recognize jaw and
tongue gestures for subtle interaction [1, 2, 19]. Research in de-
veloping silent speech interfaces are similarly motivated by subtle
interaction [6] by minimizing visible movement [14, 19, 21] and
sound [2, 10, 32]. Another strategy for facilitating socially accept-
able gestures is to disguise the gesture as an everyday action or
interaction with another “conventional” technology [22, 26, 33].
Itchy Nose presents a subtle interface for wearable computers by
detecting nose flicks, taps, and rubs using EOG glasses [17]. Blink-
ing and winking gestures have also been used as a mode of unob-
trusive input interaction that can be disguised as normal activity
[13, 30].

In our research, we use multiple everyday actions such as hand
twists or head nodding for input and achieve sufficient accuracy
using commodity wearable devices.

3 SELFSYNC
SelfSync is designed as a synchronous body-based gesture performed
across multiple body parts. When creating our system’s gesture
set, we considered common locations where a wearable or sensor-
enabled device might be present on the user’s body.

• Head - Manywearable accessories such as headphones, ear-
buds, and smart eyewear have integrated sensors such ac-
celerometers, gyroscopes, and even electrooculography (EOG)
electrodes.

• Hand - Devices such as smartwatches, smart rings, and sensor-
enabled armbands can capture both gross arm movements
and subtle finger movements.

• Leg - Smartphones are often placed in the user’s pants pocket
and the area is well positioned for capturing information
about the orientation and movement of the leg [28].
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We chose five common gestures that can be performed easily
with periodic movement using the aforementioned body parts (Fig-
ure 1): leg Left-Right (toe rotation) and Up-Down (dorsiflexion);
head Left-Right and Up-Down; and Hand Twist. For SelfSync, we
initially considered seven combinations of these gestures: Hand.T
& Head.V, Hand.T & Head.H, Hand.T & Leg.H, Head.V &
Leg.V, Head.H & Leg.H, Hand.T & Leg.V, and Head.H &
Leg.V. In our pilot studies, the last two gestures had the lowest
true-positive accuracy, and we found them to be much harder than
the rest of the gestures. Hence, we omitted them from our gesture
set and decided to explore the first five gestures in our evaluations
(Figure 1).

3.1 System Overview
Most commodity smart devices have in-built Inertial Measurement
Unit (IMU) sensors to track the movement of devices. We used gy-
roscopes which measure the rate of rotation to track the move-
ment of each body part. Hence, SelfSync’s gestures are rotational
motion. For both of our studies, we decided to use common off-
the-shelf devices: Sony Smartwatch 3 SWR50 for the hand, Google
Glass Explorer Edition for the head, and an Android phone for the
leg. We sampled gyroscope data at 33Hz for the watch and 100Hz
for Glass and the phone. The data streams through a UDP socket
via WiFi to a central server for processing. We used a Macbook
Pro as the central server. We implemented the system in Python
with Pygame for visualization in data gathering and Scikit-learn
for offline training and testing of machine learning classifiers.

In the data collection, to help participants to know whether
they are doing well, we used a simple threshold-based classifier to
show users visual feedback of their trial. The interface only checks
whether a Pearson correlation coefficient value has passed a given
threshold. We used 1.5-seconds (1-second for the offline classifier)
of data for calculation. We ran a Principal Component Analysis
that converted the three axes of each gyroscope to one dominant
axis for segmentedwindows of data.Then,we ran cross-correlation
to align the time series from two different devices and ultimately
calculated the Pearson correlation coefficient. We did this process
for each pair: head & hand, head & leg, and hand & leg. With this
system, wewere able to distinguish which body parts weremoving
synchronously.

Figure 3: Feature set for the SelfSync gesture interface.

After data collection, to classify different SelfSync gestures and
make it robust to daily-life actions, we trained a Random Decision

Forest classifier with extracted features, including the correlation
coefficient. We extracted a set of per-device features and coordi-
nated (cross-device) features, which are shown in Figure 3. In total,
we used 58 features (3 devices x 17 per-device features + 7 coordi-
nated features).

3.2 Data Collection
To collect data for the classifier training and testing, we conducted
a within-subject offline study in our laboratory. We collected both
false and true positive data. The false data was collected while par-
ticipants were completing paperwork for the study. True trial data
was collected with displayed prompts over two conditions: stand-
ing and sitting.

3.2.1 Participants. We conducted the study with 10 students (all
male, ages 20-25) fromour institution in theUnited States, recruited
via word of mouth. Only two participants regularly used wear-
ables (smartwatches) for tasks such as notification updates, screen-
ing calls, controlling music players, and monitoring health. Partic-
ipants received $10 compensation for their time.

3.2.2 Procedure. Upon arrival, the participantsworeGoogle Glass.
The smartwatch was worn on the left wrist, and the smartphone
was kept in the right-leg pocket. The participants walked around
the lab with the three devices while reading the instructions and
consent form.The experimenter walked alongside the participants
and explained the details of the study. Approximately five minutes
of false-positive data was collected from each participant.

For true data collection, the experimenter demonstrated each
gesture in no specific order. The participants were asked to prac-
tice until they could confidently perform the gesture. Visual feed-
back of the gesture detection by the threshold-based classifier was
shown during this phase.The participants then got acquaintedwith
the experimental setup. For the main study, each gesture was pre-
sented in random order and participants were asked to perform the
target gesture as naturally as possible. Users began performing the
gesture during a five seconds warmup period that commenced af-
ter acknowledging the target gesture by pressing a key on the key-
board. Then a two seconds recording period started automatically
after the warmup period ended. The participants were notified of
the start and end by beeps. Participants performed five repetitions
for five gestures across two conditions giving a total of 50 gestures
per participant.

4 SELFSYNC CLASSIFIER
We removed eight outliers from our data set which sensor value
was too short or small, or was performed with different body part.
We took two one-secondwindows from each recorded trial for true
positive data, and cut the collected false positive data into one sec-
ond windows avoiding overlap. Next, we trained a Random Deci-
sion Forest (RDF) classifier on this dataset and evaluated the ges-
tures based on accuracies for user-independent, user-dependent,
and user-adaptive models. The false positive rate was calculated
using the user-adaptive model and applying a threshold.
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Figure 4: Confusion matrices for user independent (left), user dependent (center), and user adaptive (right) tests.

4.1 Result
User-dependent models were trained using a subset of each user’s
data and then tested on an independent test set. We performed
3-fold cross validation on each user’s data and achieved 96.0% ac-
curacy across all five gestures. Details are shown in Figure 4. We
built user-independent models by training the classifier on data
from all users holding out one user at a time and then testing the
classifier on the holdout’s data.The results were averaged across all
combinations of leave-one-user-out cross validation. In our results,
Hand.T & Leg.H had the highest average accuracy of 96.8%, fol-
lowed by Hand.T & Head.Vwith 90.6% accuracy. Training a
user-independent model with additional training instances from
a specific user results in a user-adaptive model. By performing 10-
fold cross validation on the whole dataset, we achieved 98.2% av-
erage accuracy.

We tested the user-adaptive models for false positives at four
confidence level thresholds: 0.6, 0.7, 0.8, and 0.9. At 0.6 confidence
threshold, when we ran all the false-positive data we collected at
the beginning of our user study, the false-positive rate was 5.29 er-
rors per hour.The classifier triggered four false detections as either
Hand.T & Head.V or Head.V & Leg.V. For all other thresholds,
the SelfSync classifiers did not have any false positive errors (0.00
errors per hour). There was not a considerable change in the other
true positive accuracies measured above.

4.2 Discussion
When accuracies are higher for user adapted training than user de-
pendent, it often indicates that each user did not provide enough
data to span the space of probable input. In this case, that hypoth-
esis is highly probable. However, the user independent rates are
significantly less than the user dependent rates. That result indi-
cates that there is variability in how the gestures are performed
across users, perhaps due to improper training or physiological dif-
ferences. However, it could also mean that there was not enough
training to cover all the situations in which the interfaces was used.
Adding some user specific training improves recognition signifi-
cantly. In addition, Hand.T & Leg.H is surprisingly robust. Per-
haps there is less variability in how users move their legs back and
forth horizontally. We only need one gesture with high accuracy
to be the equivalent of a hotword, and one can imagine a subtle ver-
sion of this gesture, with slight twisting of the wrist and moving
of the leg, to initiate a silent interaction while in a meeting.

A gesture for input initialization should achieve high accuracy
with a low number of false positives to be practical for everyday
use. Our user-adaptive models recognized a few false-positive in-
stances as gestures involving the leg. Classification of non-gesture
data as leg gestures could be due the fact that users were mainly
involved with walking and reading during the false-positive data
collection phase of the user study. However, for thresholds ≥ 0.7 ,
our classifier was capable of differentiating every day action from
actual gestures and resulted in zero false-positives without affect-
ing gesture recognition accuracies considerably. We believe that
everyday actions rarely include synchronous motion of two body
parts and hence SelfSync should be robust against false-positives.

Among hand and head gestures, Hand.T & Head.V has higher
accuracy in user-independent and user-dependent models. How-
ever, since Hand.T & Head.H achieved similar and higher accu-
racies in user-dependent and user-adaptive cases respectively and
was more suitable in terms of workload, acceptability, and user
preference, we think it is the better gesture among the two.

For combined head and leg gestures, leg up-down had worse
synchronization issues compared to leg left-right. However, it achieved
better accuracy in all cases. Moreover, Hand.T & Leg.H achieved
the best accuracy among the leg gestures in all cases. Hence, when
results from the previous section are taken into account, Hand.T
& Leg.H comes out as the most optimal gesture among SelfSync
gestures involving leg.

5 CONCLUSION
Most gesture systems focus on gestures for responding to notifi-
cations or for giving commands once an interface is triggered and
listening. Few gesture recognizers have low enough false positive
rates such that the gesture can be used to initiate an interaction.
SelfSync introduces the concept of having the user move two body
parts in synchrony to indicate a desire to initiate communication
with their computer. However, how subtle can these gestures be
made? Would they be unnoticeable to a bystander sharing an ele-
vator or to a conversational partner? One of the best uses of wear-
able computers is to provide aid during face to face conversation.
Creating subtle gestural interfaces that can be used without dis-
tracting from a face-to-face conversation would help further that
vision significantly.
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