
Extracting Replayable Interactions from Videos of Mobile App
Usage

Jieshan Chen∗
Australian National University

Canberra, Australia
jieshan.chen@anu.edu.au

Amanda Swearngin
Apple

Seattle, WA, USA
aswearngin@apple.com

Jason Wu
Apple

Seattle, WA, USA
jason_wu2@apple.com

Titus Barik
Apple

Seattle, WA, USA
tbarik@apple.com

Jeffrey Nichols
Apple

Seattle, WA, USA
jwnichols@apple.com

Xiaoyi Zhang
Apple

Seattle, WA, USA
xiaoyiz@apple.com

ABSTRACT
Screen recordings of mobile apps are a popular and readily avail-
able way for users to share how they interact with apps, such as
in online tutorial videos, user reviews, or as attachments in bug
reports. Unfortunately, both people and systems can find it diffi-
cult to reproduce touch-driven interactions from video pixel data
alone. In this paper, we introduce an approach to extract and re-
play user interactions in videos of mobile apps, using only pixel
information in video frames. To identify interactions, we apply
heuristic-based image processing and convolutional deep learning
to segment screen recordings, classify the interaction in each seg-
ment, and locate the interaction point. To replay interactions on
another device, we match elements on app screens using UI element
detection. We evaluate the feasibility of our pixel-based approach
using two datasets: the Rico mobile app dataset and a new dataset
of 64 apps with both iOS and Android versions. On these datasets,
we evaluate the performance of our video segmentation, interaction
classification, and interaction localization methods with insights.
Our approach can successfully replay a majority of interactions
(iOS–84.1%, Android–78.4%) on different devices, which is a step
towards supporting a variety of scenarios, including automatically
annotating interactions in existing videos, automated UI testing,
and creating interactive app tutorials.

KEYWORDS
video record and replay, video segmentation, video classification,
action localization, mobile applications

ACM Reference Format:
Jieshan Chen, Amanda Swearngin, Jason Wu, Titus Barik, Jeffrey Nichols,
and Xiaoyi Zhang. 2022. Extracting Replayable Interactions from Videos of
Mobile App Usage. In . ACM, New York, NY, USA, 14 pages. https://doi.org/
10.1145/xxx

∗Work done at Apple.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
ACM ISBN mmmmmmmmmmmmmm. . . $15.00
https://doi.org/10.1145/xxx

1 INTRODUCTION
Videos of mobile app usage have become commonplace on the
internet. For example, Tech vloggers make app tutorials to educate
new users or share the best practices of app features. People record
app screens step-by-step to guide their parents who are not familiar
with an app, and app testers create bug reports with rich context in
video. In particular, screen recordings—that is, videos that record
on-screen content but not the user’s hands—are easy to produce
and share using built-in smartphone facilities.

In order to effectively use these screen recordings however, the
viewer has to first understand the interactions performed in the
video and then manually repeat them in the order shown. This
process can be time-consuming and error-prone [2], especially
when the sequence of necessary interactions is long or the recording
is played quickly. For example, a viewer may have to pause the
recording after each interaction, or even replay it multiple times
before they are able to replicate the interaction on their own device.
In addition, the target UI element for an interaction may be difficult
to locate in complex app screens, in the presence of different display
preferences—such as large fonts or dark mode—or when device or
app versions change.

What if instead of asking a user to do all of the work of interpret-
ing a screen recording, a machine could do it instead? Such a system
might identify the type of interactions that were performed and
the target UI elements that these interactions were performed on,
ideally from the recording alone. Work has been attempted in this
area before, but a limitation of existing systems is that they require
a special recording apparatus [16, 29], visual indicators added dur-
ing recording [2, 21] or additional metadata such as UI transition
graph [9] in order to capture the interactions demonstrated in the
video.

In this paper, we propose a system that automatically extracts
user interactions from ordinary screen recordings, without requir-
ing additional settings, specially-instrumented recording tools, or
source code access. Our system performs three phrases to extract
the interactions: 1) video segmentation, 2) interaction classification,
and 3) interaction localization. Our system first segments the start
and the end of each interaction. Then, it runs heuristics to choose
between six common interaction types. Finally, our system uses a
3D convolutional encoder to learn the semantics of the animation
in the UI, a 2D convolutional encoder and decoder to capture the
connections between consecutive UI states, and another decoder to

ar
X

iv
:2

20
7.

04
16

5v
1

 [
cs

.H
C

]
 9

 J
ul

 2
02

2

https://doi.org/10.1145/xxx
https://doi.org/10.1145/xxx
https://doi.org/10.1145/xxx

, , Chen, et al.

infer the interaction probability heatmap and output the location
of the interaction. Based on UI detection results from screenshot
pixels, we can find the target UI element and its content. We also
explore methods to replay the interactions that we extract from
videos on another device. Our replay prototype runs UI detection
on each app screen, locates the best matched UI element for each
recorded interaction and performs the interaction on each UI ele-
ment in turn. Table 1 summarizes the key differences between our
method and existing techniques.

We evaluated our system on the Rico dataset [7] (created 4 years
ago), and a smaller app usage dataset (64 top-downloaded apps,
each has iOS and Android versions) that we collected and annotated
recently. For video segmentation, our system achieves 84.7% recall
on iOS, and slightly worse recall on Android (72.0%). For interaction
classification, our system achieves comparable accuracy on both
platforms (iOS–87.6%, Android–89.3%). For interaction localization,
our system achieves the best accuracy on Rico (69.1%), as the model
is trained on this dataset. Although app UI design changes have
occurred since Rico, our model still works on recent Android with
lower accuracy (56.2%), and 41.4% accuracy on recent iOS apps.
For interaction replay, we found that the majority of interactions
(iOS–84.1%, Android–78.4%) can be replayed on different devices.

The contributions of this paper are as follows:
• We present a pixel-based approach to automatically extract
and replay interactions from ordinary screen recordings
without requiring additional settings, specialized recording
instrumentation, or access to source code.

• We implement a prototype system that instantiates our ap-
proach. The results of our evaluation show reasonable accu-
racy in video segmentation, interaction classification, and
interaction localization. Our system successfully replays a
majority of interactions on different devices. These results
demonstrate the feasibility of our pixel-based approach to
extracting replayable interactions.

2 RELATEDWORK
We discuss the related work across two areas: 1) identifying inter-
actions on user interfaces, and 2) replaying user interactions.

Table 1: Differences in input, additional data requirements,
and support for cross-device replay between existing tech-
niques and our proposed system.

Input Additional
Requirement

Cross-Device
Replay

APPINITE[16] User demonstration
View hierarchy,
Interaction
point & type

No

V2S[2] Video Add touch indicator
to the video No

RoScript[21] Test script or Video Include fingertips No

LIRAT[29]
Test script or
User demonstration

Interaction
point & type Yes

GifDroid[9]
Video and UI
Transition Graph None No

Our system Video None Yes

2.1 Identifying Interactions on User Interfaces
Identifying user interactions is an important task on various plat-
forms, including mobile [2, 9, 16, 21, 29], desktop [19, 32], web [1,
24], and even the physical world [10]. The extracted interactions
can empower many applications, including task automation [16],
bug reporting [2], automated app testing [21, 24, 29], and guidance
to use appliances [10].

Previous research has applied various methods to identify user
interactions for the purposes of replaying them on the same or
another device. LIRAT [29] obtains the interaction location and
type by using a debugging tool to access low-level system events.
The device must also have a connection to a computer that runs
the debugging tool. APPINITE [16] adds a layer of interaction prox-
ies [31] on top of the current running app. An interaction proxy
layer captures the users’ taps and passes them to the underlying
app. This method requires installing an additional background ser-
vice and obtaining Accessibility permissions, and may not work on
all platforms. V2S [2] requires users to access Android developer
settings in order to show a touch indicator at each tap event. With
this known visual indicator, V2S presents an object detection model
to locate the touch indicator and infer the interaction location. This
method adds extra work to app video creators, and not all video
creators would like to show a developer-mode touch indicator in
videos. RoScript [21] instead requires video creators to use an ex-
ternal camera to record the phone screen and finger movement. It
leverages computer vision techniques to recognize a finger and its
relative location to the app UI, and the system requires users to
move their fingers outside the phone screen between each inter-
action for segmentation. This method also requires an additional
camera and a stable setup of phone and camera. While GifDroid [9]
does not require complex setup of the input video, it additionally
relies on the UI transition graph to assist interaction identification.
However, constructing UI transition graph is not be a trivial graph
and requires many efforts.

The methods above require settings or recording tools that are
specific to a platform (e.g., Android) [16, 29], add extra work to
app video creators [2, 21], and will not work on existing app usage
videos [2, 16, 21, 29]. We believe our pixel-based approach can be a
more generalizable way to collect interaction traces from videos.

2.2 Replaying User Interactions
After extracting user interactions, the key challenge of replaying is
to find where to interact on the replay device. Some work repeats
the (x, y) coordinate from the recording [2, 11], while some appli-
cations [21, 29] find matching UI elements on replaying devices so
that the replay will be more robust to dynamic content and device
change.

To find a matching UI element sometimes requires access to
a view hierarchy. For example, APPINITE [16] tries to match UI
metadata from the view hierarchy (e.g., parent-child relationship,
text, UI Class) so that it can still locate the target UI element even
when the target UI element moves to a different location due to
screen content change. However, the view hierarchy is not always
available, and the view hierarchy can be incomplete or misleading.

To avoid these limitations, some work leverage computer vision
techniques to match targeted UI elements. For example, LIRAT [29]

Extracting Replayable Interactions from Videos of Mobile App Usage , ,

compares image features to match UI elements between recording
and replaying screens, and extracted layout hierarchy from pixels
to improve matching. Similarly, our method also leverages video
pixels to match target UI elements, but we use object detection
models that have better performance.

3 SYSTEM
Essentially, our system extracts interactions from pixels in video
frames, and uses this information to replay the interactions on an-
other device. As shown in Figure 1, extraction is performed through
three phases: 1) video segmentation (Section 3.1), interaction clas-
sification (Section 3.2), and interaction localization (Section 3.3).
Our system then applies a set of strategies in the interaction replay
phase (Section 3.4). The rest of this section describes the system
phases in detail.

3.1 Phase 1—Video Segmentation
Video segmentation splits the frames of the input screen recording
into a sequence of representative frames that maximally differenti-
ates the video, or keyframes [33].

To illustrate how this works, consider the frames of the screen
recording shown in Figure 2. We start by computing the histogram
of oriented gradient (HOG) [6] feature descriptor for each frame. As
the name suggests, the HOG descriptor is a simplified representa-
tion of the screen in terms of its structure or shape through gradient
and orientation. We use this HOG descriptor to calculate similarity
between consequence frames using a structural similarity (SSIM)
measure [28]. Intuitively, a sequence of similar frames represents
a stable interval—with the middle of this stable interval being the
keyframe, represented with an arrow in Figure 2.

Next, we run a spike detection algorithm using empirical parame-
ters we derived from a number of app usage videos (Section 4): 1) the
spike should be larger than (Similaritiesmax−Similaritiesmin)/15 1,
to be resilient to partial content changes that are not caused by user
interactions, and 2) the stable intervals should contain at least four
frames, to mitigate against interactions from transient UI changes.
The inverted spikes in Figure 2 indicate interaction clip points that
segment the keyframes.

3.2 Phase 2—Interaction Classification
This phase identifies six interactions—type, swipe left, swipe right,
swipe up, swipe down, and tap [17]—through the following heuris-
tics:

Type interactions are always associated with a virtual keyboard.
We inspect the OCR results on a screen to determine if they con-
tain text corresponding to the rows of a keyboard—that is, 3 rows
of QWERTY keyboard, and 4 rows of number pad (Figure 3(a)).
For entered text, we compare the OCR results in the first and last
frames of a type interaction. To illustrate, in Figure 3(b)’s right-most
screen, the placeholder inside the top search bar changes as text is
entered, with suggestions appearing below. Among all changed or
added OCR text results in the last frame, we pick the top-most one
(smallest 𝑦) as the entered text.

Swipe (left, right, up, down) interactions shift several UI ele-
ments within a scrollable area, while the top title bar and bottom
115 is an empirically set number from experiments.

tab bar are often unchanged (see Figure 6 and Figure 7 in the Ap-
pendix). Consequently, we compare the OCR results between any
two consecutive frames and calculate the movement between each
pair of text strings. If multiple (𝑁 >= 3, an empirical parameter)
text strings move in the same horizontal or vertical direction within
a threshold distance, our system classifies the interaction as a swipe.
We call the text strings with shared movement a text collection.
Note that sometimes “snackbar” elements may briefly appear at the
bottom of the screen with messages about app processes, so we set
𝑁 >= 3 to avoid confusing this UI behavior with a swipe.

Capturing the semantics of swipe interaction requires three prop-
erties: the direction, the distance, and initiation point. The Swipe
direction is determined trivially through the movement coordinates.
To calculate the swipe distance, we use the median distance of move-
ment between two consecutive frames, and then sum all median
distances between any two consecutive frames in the interaction
clip. The swipe initiation point is the either first or last text by x or
y position, for horizontal or vertical swipe, respectively.

Tap interactions may lead to a new UI state, pop-up keyboard,
or cause few or no movement of shared elements. If an interaction
clip is not classified as either a type or swipe, we classify it as a a tap
interaction. From the Rico dataset [7], we found that the majority
of interactions in mobile apps are tap interactions (91.7%), and that
type and swipe interactions often cause changes on text elements—
for example, through creating or moving text. Informed by these
findings, treating tap as the fall-through interaction has reasonable
justification.

For a tap interaction, we must also identify the tap location. This
is described in the next section.

3.3 Phase 3—Interaction Localization for Tap
Interactions

For tap interactions, interaction localization is needed to identify
the location of the tap. In some cases, the start and end UI state
will share an interaction component. For this situation, we can
use heuristic-based localization (Section 3.3.1) to identify the tap
interaction location.

When heuristic-based location fails, we can rely on visual feed-
back cues provided by the app when the users tap a location. In
this situation, we leverage the animation effect and the connec-
tions between the two consecutive UI states to train an interaction
localization model to locate the interaction point (Section 3.3.2).

3.3.1 Heuristic-based Localization. When the title of the new UI
state is same as the label of one items in the content area, it is likely
that this is the item the user tapped. In Figure 4(b), when users tap
on “History”, the title of the newUI state also becomes “History”. Be-
cause this is a high-accurate heuristic, we first detect the existence
of this pattern to locate the interacted element (Section 3.3.1).

To detect the title, we first run OCR on the first and last frame
of each interaction clip to obtain all texts. We then find the top title
in the second frame, and check if there is an element with the same
text in the main content—excluding the top bar and the bottom
app bar. If so, we output the position of this element as current tap
interaction point.

, , Chen, et al.

Input

Recording

Video
Segmentation

Interaction

Classification

Interaction
Localization

… … …

Tap Swipe
Up

Output

OCR-based

Heuristics

+ Scroll Distance
+"Hamish & Andy"

Deep Learning
Model + Heuristics

OCR-based

HeuristicsType

Figure 1: Flowchart of our system: First, it segments the frames from an input screen recording into a sequence of representa-
tive frames (i.e., keyframes). Second, it applies heuristics to classify the interactions into six common types. For type and swipe
interactions, it relies on the OCR heuristics to locate the interaction point and the corresponding information (typed text for
type interactions, scroll distance for swipe interactions). For tap interactions, it applies both heuristics and a deep learning
based interaction localization model to determine the interaction point. The overall output is an interaction trace that can be
replayed on another device.

3.3.2 Localization Model. From our observations of the Rico ani-
mation data and our collected app usage videos, we identified three
common visual cues that we can leverage to locate tap interactions:
1) ripple effect—a radial action in the form of a visual ripple ex-
panding outward from the user’s touch, 2) expand effect—which
scales up and cross-fades a UI elements, and 3) changes in the text
or background colors. In addition, we noticed that in some cases,
the start and end UI state shares the interacted element. For ex-
ample, in Figure 4(a), when users tap “Hotels That Are Homes for
the Harvest”, the new UI state contains the same text. However,
although in this case, the shared element is the interacted element,
it may fail in other situation. We rely on our models to learn the
difference between normal shared elements and shared interacted
elements.

We trained a deep-learning based interaction localization model
to locate the tap point. Inspired by the success of human pose

recognition [20], object detection [15, 18], and video classification
models [25], we designed a model to predict a heatmap of possible
tap points by learning the semantics of the animation effects.

As shown in Figure 5, our model primarily consists of three
blocks: a 2D block, a 3D block and a decoder. The 2D block is based
on 2D convolutional layers [20] and aims to find the connections
between two consecutive UI states, while the 3D block—based on
3D convolutional layers [25]—captures the temporal relationship
among frames—that is, the animation effect across these frames—
in each interaction. A final decoder then fuses features extracted
from the 2D and the 3D block to infer the interaction heatmap. We
added a shortcut module following the U-Net model [22] to help
the model to retrieve the coarse features from the shallow layer in
the encoder part to refine the extracted high-level abstract features
and help dense per-pixel heatmap prediction. Concretely, given 8
frames extracted from one interaction clip as the input of our model

Extracting Replayable Interactions from Videos of Mobile App Usage , ,

… … …… …

sim
ila

rit
y

Stable intervals: An interval that contain similar frames

Keyframes: the middle frame in each keyframe interval

A stable interval

A keyframe

An interaction clip

Figure 2: Visualization of image similarities between consecutive frames. The spikes indicate segments in the video where
user interactions were performed, which we use to segment the keyframes. In this figure, we detected six stable intervals, and
for each interval, we take the middle frame as the extracted keyframe. The users tap on the bottom-right “search” icon, tap
the input field on the top, type text, tap the bottom-right “search” icon, and swipe up to see more content.

Type Keyboard Pattern

(a) Keyboard Patterns (b) 1->2 Tap on an input field; 2->3 a Type interaction
1 2 3

The First UI State The Second UI State The Third UI State

Figure 3: Examples of patterns that our interaction classification heuristics examine to classify a type interaction, including (a)
Keyboard patterns that can be detected from OCR results. (b) When users tap on an input field, the title of the UI will change
instantly; when users perform a type interaction, the title will have a steady change or remain the same.

(Section 4.4), we take the first and the last frames as the input to
2D block to learn the connections between the two consecutive UI
states. In parallel, we feed all frames into our 3D block to encode
the animation effect: the extracted features from 2D block and 3D
block will then be concatenated, and the combined feature will be
fed into the decoder to predict the interaction heatmap, which is
the output of our localization model. We take the point with highest
probability in the predicted heatmap as the output interaction point.

Given that we only have one tap point in each training sample,
there will be only one out of all 256x512 points in the heatmap
being set to 1, while all other points are set to 0. Therefore, our

dataset has a similar data imbalance problem as encountered in
many object detection tasks [18]. We used two strategies to alleviate
this issue. First, instead of setting only one point in the heatmap as
1 and others as 0, we found the bounding box of target UI element
(Section 4.1.1) and then applied the 2D Gaussian function to obtain
the probability of surrounding points in the interaction elements [8,
15, 20]. Second, we used a variant of the focal loss [15, 18] to perform
a weighted penalization on the low confidence data: let 𝑝𝑖 𝑗 be the
predicted score (a.k.a. confidence) at location (i,j) in the predicted
heatmap, and let 𝑦𝑖 𝑗 be the ground-truth score augmented by the

, , Chen, et al.Shared elements + Title

(a) Shared Elements (b) Title

The First UI State The Second UI State The Second UI StateThe First UI State

Figure 4: Examples of patterns that our interaction localization heuristics look for to localize a tap interaction, including (a)
showing the start and the end UI state when the user taps on an item, and the item remains in the next page having the same
label and the same image, and (b) showing an example when the tapped item’s label becomes the title of the next UI state.

3x3 conv, 64

2x2 MaxPool
Stride 2x2

3x3 conv, 256

x2 UpSample

3x3 conv, 128

x2 UpSample

3x3 conv, 128

x2 UpSample

3x3 conv, 64

x2 UpSample

3x3 conv, 1

x2 UpSample
Concatenate

Softmax

3x3 conv, 128

2x2 MaxPool
Stride 2x2

3x3 conv, 128

2x2 MaxPool
Stride 2x2

2x2 MaxPool
Stride 2x2

2x2 MaxPool
Stride 2x2

3x3x3 conv, 1

3x3x3 conv, 16

1x2x2 MaxPool
Stride 1x2x2

3x3x3 conv, 64

1x2x2 MaxPool
Stride 1x2x2

3x3x3 conv, 128

3x3x3 conv, 128

2x2x2 MaxPool
Stride 2x2x2

3x3x3 conv, 256

3x3x3 conv, 256

2x2x2 MaxPool
Stride 2x2x2

3x3x3 conv, 256

3x3x3 conv, 256

2x2x2 MaxPool
Stride 2x2x2 3x3 conv, 256

4x1x1 MaxPool
Stride 4x1x1

3x3 conv, 256 3x3 conv, 256

Concatenate

3x3 conv, 256

x2 UpSample

3x3 conv, 128

x2 UpSample

3x3 conv, 128

x2 UpSample

3x3 conv, 64

x2 UpSample

3x3 conv, 1

x2 UpSample
Concatenate

Softmax

2D Block

3D Block

Shortcut

Shortcut

Take the first and

the last frames

Output:

Heatmap

Prediction

Ground Truth

Focal Loss

Input: 8 Frames
Decoder

Figure 5: The structure of our interaction localization model. Given eight frames as the input, the model takes the first and
the last frames as the input to the 2D block to learn the connections between the two consecutive UI states; Concurrently,
the model feeds all eight frames into a 3D block to encode the animation effect; the model later concatenates the extracted
features from the 2D block with the animation features extracted from the 3D encoder, and the combined features are then
feed into a decoder to predict the interaction heatmap.

2D Gaussians. Then, the loss function is:

𝐿 = − 1
𝑁

𝐻∑︁
𝑖=0

𝑊∑︁
𝑗=0

{
(1 − 𝑝𝑖 𝑗)𝛼 𝑙𝑜𝑔(𝑝𝑖 𝑗) 𝑖 𝑓 𝑦𝑖 𝑗 = 1

(1 − 𝑦𝑖 𝑗)𝛽 (𝑝𝑖 𝑗)𝛼 𝑙𝑜𝑔(1 − 𝑝𝑖 𝑗) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

We used the interaction trace and animation datasets in Rico
dataset [7] to train our model. The details are explained in Sec-
tion 4.1.1. Our localization model is trained on 4 Tesla V100 GPUs

using an Adam optimizer [14] for 25 epochs with the initial training
rate being 0.01 and a batch size of 32. For each interaction clip, we
evenly picked 8 frames from the interaction clips as model input.
We can also pick more frames as input, and we evaluated its impact
in Section 4.4 Therefore, the structures of 3D blocks for these two
inputs are slightly different, with the 3D pooling layer in the third
convolutional block having a depth stride of 1 or 2. If the interaction

Extracting Replayable Interactions from Videos of Mobile App Usage , ,

clip does not contain 8 frames, we duplicate some of the frames
to get 8 frames. During training, the first and the last frame is fed
into the 2D block and extract features from the first and the next UI
state. In parallel, all frames are fed into the 3D block to extract the
semantics of the animation effect. The two extracted features from
2D and 3D blocks are then concatenated and fed into a decoder to
predict the interaction heatmap. The original size of Rico animation
clips are 281x500 (width x height), and we resized them to 256x512.

3.4 Phase 4—Interaction Replay
The previous phases extracted interactions from video. When re-
playing interactions on another device, we sometimes can directly
repeat interactions on screen (for example, typing entered text), but
otherwise need to find a matching target UI elements to apply the
interactions—such as a UI element to tap or a point to start swiping.

To accomplish interaction replays, we run an object detection
model [30] to detect UI elements on each keyframe of recorded
video, and then find the UI detection that contains a tap point or
a swipe initiation point; if there are multiple detections, we pick
the smallest detection. To find the target UI on the screen of a new
device, we run fuzzy matching [23] for text elements and leverage
template matching [26] for non-text elements.

Specifically, we choose the text with the highest weighted ratio
(case-insensitive, ignore punctuation) [23] as the matching target
text element. For non-text element, we use it as the template image,
and slide it over the new screenshot to find a location with the
highest matching value. We used normalized correlation coefficient
as our matching function. When the replaying devices have dif-
ferent resolutions than the recorded video, we scale (50% to 200%)
accordingly to the template image so that its size is similar to the
target UI element in new screenshot—that is, multi-scale template
matching.

Running matching algorithms on every pixel of screenshot can
be time-consuming. To speed up matching, we first limit the search
space to the detected UIs on the new screen, and run matching on
full screenshot onlywhenwe fail to find amatch fromUI detections.

4 EVALUATION
We evaluated our system on a large-scale dataset (Rico [7], created
4 years ago), and a smaller app usage recording dataset (iOS and
Android versions of 64 top-downloaded apps) we collected and
annotated recently (Section 4.1). We evaluated each phase of sys-
tem: video segmentation (Section 4.2, iOS–84.7%, Android–72.0%
recall), interaction classification (Section 4.3, iOS–87.6%, Android–
89.3% accuracy), interaction localization (Section 4.3, Rico–69.1%,
Android–56.2%, iOS–41.4% accuracy), interaction replay across de-
vices (Section 4.5, iOS–84.1%, Android–78.4% success rate).

4.1 Datasets
4.1.1 Interaction Clips from Rico Dataset. The Rico dataset [7] is
a large-scale repository of Android app screens. In addition to UI
element information on each screen (e.g., bounding box, UI class),
the dataset also contains interaction traces of the apps and their
corresponding video clips—for example, displaying animations after
performing each interaction.

Each interaction trace provides a list of gestures to perform inter-
action, and we needed to derive an interaction type and interaction
point from each gesture. We consider six interaction types as in [17],
namely tap, swipe left, swipe right, swipe up, swipe down and type.
We adopted the following heuristics from [17] to determine tap and
swipe interactions:

(1) If an interaction contained only one gesture point or the
distance of the gesture was ≤ 10 pixels, we considered it a
tap interaction.

(2) If an interaction contained a list of gesture points with dis-
tance > 10 pixels, we considered it a swipe interaction. We
mapped the gesture direction to swipe left, swipe right, swipe
up, or swipe down.

For the type interaction, we noted that Rico dataset workers used
physical keyboards to type text, and the type interactions were not
recorded in the gesture data as a result. From our observations, we
noted that the type interactions happened after a tap interaction
on text field. Therefore, we detected these tap interactions and text
changes in the text field, and then manually verified these potential
type interactions.

In total, we obtained 44,536 interactions (with interaction type
and video clip) from 7,211 user interaction traces in 6,547 free An-
droid apps. Among these interactions, 91.7% (40,855/44,536) are tap,
0.3% (123/44,536) are type, 5.2% (2,299/44,536) are swipe up, 1.0%
(442/44,536) are swipe down, 1.54% (688/44,536) are swipe left, and
0.3% (129/44,536) are swipe right. We found several limitations in
Rico interaction traces and their video clips. Because the dataset
only contains clips—and not a continuous usage recording—we
were unable to evaluate our segmentation method using Rico. Some
interactions omit their video clip or gesture, while other gestures do
not match the video clips. Some video clips contain no changes in
the UI. These data quality issues may significantly impact interac-
tion classification result (especially on less frequent classes), as the
interaction types are already highly skewed. Nevertheless, we were
able to evaluate Rico on our interaction localization model—as our
identified data issues have negligible impact for tap interactions.
Thus, we used the Rico tap interactions to train our interaction lo-
calization model, and report our model performance on this testing
split. Note that as we only use tap data to train the localization
model, so that the localization model will not be biased.

An additional limitation of the Rico dataset is that it contains
only Android apps, and was collected four years ago. As a result,
this dataset may not reflect recent app designs on major mobile
platforms. Thus, we collected and annotated usage recordings from
top-downloaded iOS and Android apps—as discussed in the next
section.

4.1.2 Usage Recordings from Top-Downloaded iOS and Android
Apps. We followed the process of Bernal-Cárdenas et al. [2] to col-
lect our dataset, and ensure its diversity and representiveness. We
collected 64 top-downloaded free apps from the 32 categories in
the Australia Google Play store (two apps per app category), all of
which also offered a free iOS version to enable fair evaluation be-
tween different platforms. To ensure the collected recordings were
representative, all authors discussed and selected the tasks, which
include the key features of each app based on their description in

, , Chen, et al.

Table 2: The total number of interactions for each interaction type, and average task duration across 128 collected recordings
from 64 top-downloaded applications.

#Taps #Types #Swipe-Ups #Swipe-Downs #Swipe-Lefts #Swipe-Rights #Total Avg. Duration

Android 396 33 78 15 6 6 534 35.8s
iOS 391 36 74 12 3 2 518 29.3s
Total 787 69 152 27 9 8 1,052 32.6s

the both app stores.2 The first and second authors, one female and
one male, both without any disabilities, randomly picked an app,
installed it on both an iPhone 11 (iOS 14, physical device, 1792 x 828)
and Nexus 6P (Android 11, emulator, 2560 x 1440), and recorded the
screen while performing the same task in both the iOS and Android
apps. When recording the videos, the two authors used the mobile
apps as normal with no restrictions on their interactions.

Once app usage videos were recorded, the first author manually
annotated them to segment stable intervals, classify interaction
types, and locate interaction elements. We used an open-source
tool, labelImg [27], to facilitate the annotation process. In total, we
obtained 128 app usage recordings (𝜇 duration = 32.6 seconds), con-
taining 1,052 interactions (787 taps, 69 types, 196 swipes). Additional
details are found in Table 2).

4.2 Phase 1—Video Segmentation
We evaluated our model’s performance in video segmentation on
usage recordings from top-downloaded iOS and Android apps. We
examined each keyframe predicted by our model with all stable
intervals in annotated ground truth. We classified our video seg-
mentation are correct when a predicted keyframe falls into a stable
interval (with no other predicted keyframes in this interval). We
counted the # of correctly predicted keyframes (C), # of predicted
keyframes (P), and # of annotated ground truth keyframes (A), and
then calculated precision (𝐶

𝑃
), recall (𝐶

𝐴
) and F1-score.

Table 3 shows the performance of the video segmentation phase
using different features and feature distance functions. Among
all combinations, YUV+L1 performs the best (67.9% F1 score) on
Android recordings while HOG+SSIM (81.9% F1 score) performs
the best on iOS recordings.

Among all features, color histogram performed relatively the
worst as it simply aggregates the general image features and some-
what downplays the salient changes. RGB and YUV features per-
formed similarly as they essentially describe the same features with
different representations. The HOG feature achieved the best recall
(72.0% in Android recordings, and 84.7% in iOS recordings), which
suggests that it effectively captures UI changes.

Among all feature distance functions, L2 distance had the worst
performance, as it may overemphasize large changes. However, a
distinguishable change does not necessarily imply a change in UI
states. For example, changes in advertisement banner should not be
considered as a new UI state. SSIM had the best performance, as it
is a perceptual metric, which is able to capture general information
about the image.

2The task details can be found in our supplementary materials.

Table 3: Experimental results for video segmentation on
recordings from top-downloaded apps on iOS and Android.
We report Precision (P), Recall (R), and F1 score for each
combination of feature extraction method and distance
function.

Android iOS
P R F1 P R F1

RGB + L1 67.1% 68.3% 67.7% 80.1% 77.5% 78.7%
RGB + L2 49.7% 47.4% 48.5% 64.8% 74.0% 69.1%
RGB + SSIM 62.0% 70.4% 65.9% 78.5% 84.7% 81.5%
YUV + L1 67.4% 68.3% 67.9% 80.0% 77.8% 78.9%
YUV + L2 50.9% 51.3% 51.1% 68.3% 68.2% 68.2%
YUV + SSIM 62.2% 69.6% 65.7% 78.5% 83.5% 80.9%
Hist + L1 61.2% 66.2% 63.6% 79.8% 76.1% 77.9%
Hist + L2 62.5% 65.2% 63.8% 79.0% 72.3% 75.5%
Hist + SSIM 51.4% 58.7% 54.8% 70.0% 52.2% 59.8%
HOG + L1 57.6% 71.1% 63.6% 76.6% 83.1% 79.7%
HOG + L2 56.5% 56.4% 56.4% 73.8% 83.3% 78.2%
HOG + SSIM 61.0% 72.0% 66.0% 79.2% 84.7% 81.9%
SIFT 52.5% 58.4% 55.3% 70.3% 71.6% 71.0%

Overall, our method can effectively segment app usage videos
into interaction clips when UI states have salient differences. We
would like to share insights when our method fails to predict a
keyframe. We missed keyframes when user interactions lead to a
subtle change (or no change) on the UI. For example, when users
select an item in a list, a small checkmark will appear. Such a
small difference may be ignored by our simple feature extraction
methods. Understanding the whole screen context would help us
capture this important change on the UI. The effect of these errors
are they reduce recall. We predicted extra keyframes on animations
that are not caused by user interactions. For example, when users
enter an image-heavy screen, a loading animation may appear
while waiting. Similarly, when users download a file, a progress bar
updates frequently and may automatically move to the next UI state
once the file is downloaded. In the future, we should recognize these
common animations. The effect of these errors reduce precision.

We also obtained insights from the performance differences
we found between iOS and Android recordings. Our method may
predict frames with changing advertisements as extra keyframes,
which are not caused by user interactions. From our observations,
Android apps tended to contain more banner advertisements while
iOS apps displayed fewer advertisements. In addition, the Android
emulator we used may have higher latency than their physical

Extracting Replayable Interactions from Videos of Mobile App Usage , ,

Table 4: Experimental results for interaction classification
on recordings from top-downloaded apps on Android and
iOS, including Precision (P), Recall (R), and F1 Score

Android iOS
P R F1 P R F1

Tap 94.6% 91.9% 92.7% 94.6% 89.2% 91.8%
Type 74.4% 87.9% 80.6% 57.1% 100.0% 72.7%
Swipe Up 92.9% 81.2% 86.7% 90.2% 74.3% 81.5%
Swipe Down 46.7% 53.8% 50.0% 64.3% 75.0% 69.2%
Swipe Left 46.2% 100.0% 63.2% 33.3% 100.0% 50.0%
Swipe Right 75.0% 100.0% 85.7% 100.0% 100.0% 100.0%
Macro Avg. 71.4% 85.8% 76.5% 73.2% 89.8% 77.5%
Weighted Avg. 90.4% 89.3% 89.6% 90.3% 87.6% 88.3%

Accuracy: 89.3% Accuracy: 87.6%

counterpart devices. Because the emulator takes longer for UI ren-
dering and UI transitions, this makes it harder to distinguish UI
rendering and transitions from user interactions.

4.3 Phase 2—Interaction Classification
We evaluated our model’s performance in interaction classification
on usage recordings from top-downloaded iOS and Android apps.

Table 4 shows the performance of the interaction classification
phase, which performswell on both iOS andAndroid app recordings
(87.6% and 89.3% accuracy respectively). Our method achieves high
recall in most interaction types (except swipe down on Android),
and gets high F1 scores in tap, swipe up, and swipe right.

Swipe left and swipe down had the worst performance. As they
have only 9 and 27 samples out of 1,052 interactions, their precisions
can be impacted by incorrect predictions from the other interaction
types. Here is an example of failures of swipe left: the screen scrolls
horizontally when users tap on the next segmented control, which
has the same visual effect of swipe left. We also found that half of
swipe down interactions on Android were recognized incorrectly as
tap. Most of these failures were related to a date/time picker: text
in the pickers are smaller and faded to highlight currently selected
text, which reduced accuracy of OCR that our heuristics rely on.
Some failures in swipe down happen when users tap a button in the
bottom actionsheet; the actionsheet moves down and disappears,
creating a similar visual effect of swipe down. Not surprisingly, we
also found that most false positives are from tap—the majority of
interactions in our dataset.

Our method had reasonable performance on type interactions.
However, when the virtual keyboard appears, users may still per-
form non-type interactions like tap. In the future, we should focus
on the visual changes inside the virtual keyboard to confirm type
interactions.

4.4 Phase 3—Interaction Localization
We evaluated our model’s performance in interaction localization
on the large-scale Rico dataset, and usage recordings from top-
downloaded iOS and Android apps.

Table 5: Accuracy of our interaction localizationmodel com-
pared with several baselines for the Rico-Test dataset and
our manually collected recordings.

#Frames Rico-Test Recordings
Android iOS

Humanoid 8/16 29.5%/29.5% 8.8%/8.8% 9.7%/8.7%
HM2D 8/16 61.8%/52.4% 34.3%/21.7% 28.1%/21.1%
HM3D w/o shortcut 8/16 66.7%/66.9% 52.8%/53.0% 36.2%/38.9%
HM3D 8/16 67.9%/67.0% 53.0%/54.3% 40.4%/38.5%
HM3D+2D 8/16 69.1%/67.9% 52.3%/54.3% 41.0%/40.0%
HM3D+2D+Heuristics 8/16 69.1%/67.9% 53.6%/56.2% 41.4%/40.4%

Table 5 shows the interaction localization performance of our
system, and several baseline methods as comparison. The first base-
line is Humanoid [17], which predicts the next interaction given
the previous three UI screens. It follows a RNN-style method to
encode frame features step-by-step, and predicts the heatmap of
possible interaction points using a decoder module. There are also
variants of our model as baselines: HM2D (shorts for heatmap 2D)
directly uses 2D convolutional layers to learn the semantics from
animations, while HM3D instead uses 3D convolutional layers to
learn the temporal and spatial features from animations through
several layers. The default HM3D contains a UNet-style shortcut,
which is expected to help the model refine the high-level abstract
features using the features from shallow layers. We also consider
a variant of HM3D without shortcut to see the impact from the
shortcut module. Another variant close to our model is HM3D +
2D, while our final system (HM3D + 2D + Heuristics) includes
heuristics to improve performance. We also compared the perfor-
mance when the input contained 8 or 16 frames from interaction
clips.

4.4.1 Performance on Rico Dataset. Our system outperformed all
baselines, reaching 69.1% accuracywhen the input contains 8 frames
from interaction clip. We found the 3D convolutional network
(HM3D) better captured the temporal features from interactions
than RNN-style (Humanoid) and 2D convolutional based network
(HM2D). RNN-style model encodes each frame, and the compressed
frame may lose information before it is fed into the next RNN cell.
A 2D-style model heavily relies on the first layer to capture the
temporal features among frames, while a 3D-style model gradually
learns the semantics of animations through several layers. UNet-
style shortcut and additional 2D modules both help our model to
better learn features and slightly boosted the performance. Ap-
plying heuristics also improved model performance in recent app
recordings.

We then analyzed the performance across UI element types as
they have different visual effects. We considered six common UI
types in Rico dataset, namely: ImageButton, ImageView, TextView,
Button, and System Bottom Navigation Bar. The rest of UI ele-
ments fall into “Other” type. From Table 6, we found TextView and
ImageView elements had worse performance compared to other
UI types. Other UI types are tappable by default and they have
animations provided by the system UI framework. TextView and
ImageView are not tappable unless developers specify the prop-
erty or create a customized event listener. Therefore, these two
UI types are more likely to have a special animation effect or no

, , Chen, et al.

Table 6: The recall of our interaction localization model as compared with several baselines, across 6 common UI types in the
Rico Dataset. The table shows the results for models trained on 8 frames / 16 frames.

Text Button ImageView ImageButton System Nav. Bar Others
Number 783 625 521 531 388 1,592
Humanoid 1.1%/1.3% 3.5%/3.7% 17.1%/17.1% 68.7%/68.7% N/A 51.6%/51.6%
HM2D 33.3%/20.1% 63.8%/51.7% 44.7%/34.5% 79.3%/77.4% 82.0%/62.6% 69.5%/62.8%
HM3D w/o shortcut 43.0%/43.3% 68.6%/66.7% 45.9%/46.8% 83.4%/84.4% 87.4%/90.2% 72.7%/72.5%
HM3D 44.3%/40.2% 70.4%/67.4% 48.9%/49.5% 83.1%/85.3% 89.2%/89.9% 74.1%/73.3%
HM3D + 2D 44.8%/43.3% 70.9%/69.9% 49.1%/47.4% 85.5%/86.1% 89.4%/89.9% 75.4%/73.6%

visual effect. In contrast, all models performed best on the system
back button (except for Humanoid) and ImageButton, which almost
always provide visual feedback when users tap them.

4.4.2 Performance on Recent iOS and Android App Recordings. Our
model is trained on the Rico dataset collected 4 years ago, and we
wanted to investigate the feasibility of our method on recent mobile
apps. As shown in Table 5, we found that the performance of all
models degrade.

Since the release of the Rico dataset, design principles and UI
styles have changed substantially in recent mobile apps. One ex-
ample is the redesign of system bottom navigation bar. Previously,
Android apps avoided using the tab bar at the bottom of the screen
(side menu drawer is a replacement), because users could easily tap
system bottom navigation bar by mistake. Nowadays, the system
bottom navigation bar no longer shows buttons, but only a sub-
tle bar with space to enable gesture navigation. Android apps are
more likely to use the tab bar instead of the menu drawer. From
the Rico dataset, we randomly selected 100 apps and sampled one
interaction from each app. Only 6% of apps contain a bottom tab
bar, while most of the recent iOS (87.5%) and Android (75%) apps
we collected contain a bottom tab bar.

We also found the animation visual feedback to be more subdued
now. For example, the text color may only slightly change after
a tap. After examining the failure cases in recent app recordings,
we found that our model worked best when the animation visual
feedback is more apparent. As seen in the first two keyframes of
Figure 2, users tap on the bottom tab bar—which leads to a subtle
change in the text color of a tab button and an obvious change in
the main content. In the future, the understanding of all UIs on a
screen [30] will help our model focus on important UI changes—for
example, to prioritize tab button changes when a tab bar is detected.

Finally, we noticed a large performance discrepancy between
iOS and Android recordings, as the differences in their designs are
even more substantial than the differences between Rico and recent
Android apps. A larger-scale app usage recording dataset in both
iOS and Android, like Rico, will help our model better capture the
interactions under these new UI paradigms.

4.5 Phase 4—Interaction Replay
We evaluated our model’s performance in interaction replay on
usage recordings from top-downloaded iOS and Android apps. In
order to evaluate the success rate of interaction replay, the first
two authors also collected the same app interaction traces on de-
vices with different resolutions (Pixel 4 XL running Android 11 and

iPhone 11 Pro Max running iOS 15). It is a manual replay process
that will not stop by error in one step.

To focus on the performance of replay module itself, we directly
used the annotated interactions as a ground truth to avoid the errors
that propagate from each step during interaction extraction.

During this new collection, we took notes of four problems
that prevented us from replaying 23 interactions on the target
devices. First, some pop-ups windows appear occasionally while
replaying and required us to perform extra steps to close them.
These pop-up windows include advertisements, instruction hints,
rating requests, and permission requests. Second, some interactions
were related to specific time that were no longer available. For
example, when we try to replay the interaction in a different month,
the option of previous month may no longer exist and thus we
cannot replay the exact same interaction. Third, apps may contain
dynamic content that changes the required user interactions. For
example, in a recording, we need to swipe up five times to reach the
target element to tap; in the updated content, we only need to swipe
up twice. Fourth, apps add and remove features in updates. Such
updates could lead to changes in the UI layout and UI transitions,
removing an existing UI element, or affecting the navigation logic.
We counted the cases of each problem during the replay process.
Among failure cases in iOS | Android recordings, 9 | 12 are relevant
to the pop-up windows, 1 | 1 are relevant to the time, 6 | 5 are
relevant to dynamic content, and 3 | 5 are relevant to app updates.

For each interaction, our system found a matching target UI
element on newly collected screens. The first two authors manually
examined the matching result to determine whether interactions
on the matched UI could lead to the expected next UI state. The
majority of interactions could be correctly replayed in iOS and
Android apps (84.1% and 78.4% respectively).

Here are some common failure cases in UI element matching:
Image content may change across different sessions or change
due to personalization (e.g., albums in Figure 6(a) are different
in different accounts). Therefore, our image template matching
would not find the same image. There can also be multiple UI
elements contain the same text, and our text matching may find the
wrong target text element. Beyond the scope of this paper, a deeper
understanding of UI will help in resolving these failure cases: after
our system learns what content is dynamic and what content is
repetitive, it can replay the interaction on the UI element that has
the same relative position in the UI structure.

Extracting Replayable Interactions from Videos of Mobile App Usage , ,

5 DISCUSSION
Datasets. We evaluated our proposed system with two different
datasets. First, we use the Rico dataset to evaluate our localiza-
tion models in a large-scale experiment, even though the Rico
dataset only contains interactions with Android apps. The addi-
tion of a large-scale interaction dataset of iOS apps would help
better illustrate the advantages and disadvantages of our system.
To mitigate this issue, we then collected interaction traces from two
top-downloaded apps from each app category that were available
on both the iOS and Android platforms. We used these traces to
better evaluate the generalizability and robustness of the proposed
system. To ensure the manual recordings were representative, all
authors together discussed and selected the tasks to be performed,
ensuring that they covered the key features of all apps based on
their descriptions in the app stores. While each type of interaction
has a different number of trials, we believe the diversity and repre-
sentativenss of the collected apps and interactions mitigates some
of the potential issues. We also report the detailed results for each
interaction to better illustrate the performance on different inter-
actions. Our future work will include more data to better examine
and improve our system. Moreover, in the future we will examine
extending our work to other input devices of different resolutions,
such as larger-screened tablets.

Opportunities for performance improvements.Our approach
has several opportunities for performance improvements. First, sev-
eral limitations in detecting interactions were a result of modern
UI interaction paradigms which were not available when the Rico
dataset was released. Consequently, we expect that a large-scale
dataset of recent apps on multiple mobile platforms would improve
our system performance. Such a dataset would provide relevant data
to train machine learning models to enhance our heuristic-based
video segmentation and interaction classification phases, as well as
and make our interaction localization model more generalizable to
apps on iOS and Android platforms.

Our current localization model relied on video frames and their
corresponding pixel-data, achieving around 70% accuracy. This
localization model could be improved in several ways. First, we
could consider running UI detection on a screen to predict the
interactable UI elements, as in Chen et al. [5], Zhang et al. [30].
These UIs have higher probabilities for tap interactions. Additional
labels [3, 4] for some image-based interactable elements can also im-
prove the system. Second, we tried a simple heuristic-based method
to identify the connections between tapped text and the title in
new UI state. Deeper understanding of the content of text elements
would support inferring the interaction between the two UI states.
For example, ActionBert [13] demonstrates that it is possible to
predict connection elements between two UI states—even without
leveraging animation.

We proposed a straightforward method to replay interactions. In
our evaluation, it works well on the same (or similar) app versions
for a different device. This assumption applies to some applications—
for example, automated or regression testing for the the same app
version—but other scenarios, such as making app tutorials, may
require using multiple app versions. Another challenge is to replay
the interactions for the same app in different languages, which
would enable cross-locale applications. Collecting the interaction

traces in different settings (e.g., app versions, languages) would
provide more signals for our interaction replay phase. Our current
system only tests recordings within one app, while many tasks
involve multiple apps. Learning the transition between apps will
enable cross-app interaction extraction and replay to complete more
complicated tasks.

We think of our pixel-based approach as a general technique
that is also in some ways a lower-bound on accuracy: by design,
it does not take advantage of additional metadata that could po-
tentially further improve its performance. Incorporating metadata,
if available—such as the UI framework used within the app, plat-
form, and version—could boost the performance of our approach.
Of course, the disadvantage of metadata is that it is not always avail-
able, difficult to extract, or unnecessarily constraints and couples
the model to the metadata.

Applications of extracting replayable interactions. There
are several applications that may benefit from our methods to
extract and replay user interactions from video pixels. A straight-
forward application is to allow users to annotate interactions on
existing videos. For example, they may have a screen recording and
have difficulty figuring out how the user in the screen recording is
getting to a particular screen. Our system could be used to provide
on-screen annotations of our inferred interactions as the user plays
the video.

For app bug reports, users or QA testers could create videos of
issues in apps, which developers could then replay within their
own development environment to reproduce. Similarly, end-users
could upload videos to demonstrate app usage problems: automati-
cally identifying the interactions in these videos could minimize
or eliminate the errors introduced by more manual identification
procedures. In automated app testing, QA testers can sometimes
only run apps on unmodified devices, which do not allow special
recording tools or collection of metadata. Our method extracts in-
teraction traces from app usage videos, and then replays them on
other devices to test. After collecting a larger-scale app dataset on
multiple platforms, our pixel-based method could potentially en-
able cross-platform testing without relying on the platform-specific
testing APIs.

Finally, our approach could be used in app tutorials. As one exam-
ple, people with limited mobile usage experience and people with
cognitive impairments sometimes require help from others (such
as their caregivers) to use a new app or an updated version of app.
Our method might be applied to automatically create app tutorials
from app usage video recorded by users who better understand and
can demonstrate the app functionality. Then, people in need can
replay interactions on their own mobile devices, or learn how to
use apps with an on-device, interactive tutorials [12].

6 CONCLUSION
In this paper, we introduced a novel approach to automatically
extract and replay interactions from video pixels without requir-
ing additional settings, recording tools, or source code access. Our
approach automatically segments interactions from a video, clas-
sifies interaction types, and locates target UI elements for replay.
We trained our system using the large-scale Rico dataset for An-
droid, evaluated its effectiveness, and demonstrated the feasibility

, , Chen, et al.

of learning interaction locations for recent iOS and Android apps.
Our prototype can successfully replay the majority of the interac-
tions. The results of this work suggest that extracting replayable
interactions is a useful mechanism that potentially benefits a variety
of different applications and scenarios.

REFERENCES
[1] Lingfeng Bao, Jing Li, Zhenchang Xing, Xinyu Wang, Xin Xia, and Bo Zhou. 2017.

Extracting and analyzing time-series HCI data from screen-captured task videos.
Empirical Software Engineering 22, 1 (2017), 134–174.

[2] Carlos Bernal-Cárdenas, Nathan Cooper, Kevin Moran, Oscar Chaparro, An-
drian Marcus, and Denys Poshyvanyk. 2020. Translating video recordings of
mobile app usages into replayable scenarios. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering. 309–321.

[3] Jieshan Chen, Chunyang Chen, Zhenchang Xing, Xiwei Xu, Liming Zhut, Guo-
qiang Li, and JinshuiWang. 2020. Unblind your apps: Predicting natural-language
labels for mobile gui components by deep learning. In 2020 IEEE/ACM 42nd Inter-
national Conference on Software Engineering (ICSE). IEEE, 322–334.

[4] Jieshan Chen, Amanda Swearngin, Jason Wu, Titus Barik, Jeffrey Nichols, and
Xiaoyi Zhang. 2022. Towards Complete Icon Labeling in Mobile Applications. In
CHI Conference on Human Factors in Computing Systems (New Orleans, LA, USA)
(CHI ’22). Association for Computing Machinery, New York, NY, USA, Article
387, 14 pages. https://doi.org/10.1145/3491102.3502073

[5] Jieshan Chen, Mulong Xie, Zhenchang Xing, Chunyang Chen, Xiwei Xu, Liming
Zhu, and Guoqiang Li. 2020. Object detection for graphical user interface: old
fashioned or deep learning or a combination?. In proceedings of the 28th ACM
joint meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 1202–1214.

[6] Navneet Dalal and Bill Triggs. 2005. Histograms of oriented gradients for human
detection. In 2005 IEEE computer society conference on computer vision and pattern
recognition (CVPR’05), Vol. 1. Ieee, 886–893.

[7] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan,
Yang Li, Jeffrey Nichols, and Ranjitha Kumar. 2017. Rico: A mobile app dataset
for building data-driven design applications. In Proceedings of the 30th Annual
ACM Symposium on User Interface Software and Technology. 845–854.

[8] Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qingming Huang, and Qi
Tian. 2019. Centernet: Keypoint triplets for object detection. In Proceedings of
the IEEE/CVF International Conference on Computer Vision. 6569–6578.

[9] Sidong Feng and Chunyang Chen. 2022. GIFdroid: Automated Replay of Visual
Bug Reports for Android Apps. In 2022 IEEE/ACM 44th International Conference
on Software Engineering (ICSE). ACM.

[10] Anhong Guo, Junhan Kong, Michael Rivera, Frank F Xu, and Jeffrey P Bigham.
2019. Statelens: A reverse engineering solution for making existing dynamic
touchscreens accessible. In Proceedings of the 32nd Annual ACM Symposium on
User Interface Software and Technology. 371–385.

[11] MatthewHalpern, Yuhao Zhu, Ramesh Peri, and Vijay Janapa Reddi. 2015. Mosaic:
cross-platform user-interaction record and replay for the fragmented android
ecosystem. In 2015 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). IEEE, 215–224.

[12] Kyle J Harms, Jordana H Kerr, and Caitlin L Kelleher. 2011. Improving learning
transfer from stencils-based tutorials. In Proceedings of the 10th International
Conference on Interaction Design and Children. 157–160.

[13] Zecheng He, Srinivas Sunkara, Xiaoxue Zang, Ying Xu, Lijuan Liu, Nevan Wich-
ers, Gabriel Schubiner, Ruby Lee, Jindong Chen, and Blaise Aguera y Arcas.
2020. ActionBert: Leveraging User Actions for Semantic Understanding of User
Interfaces. arXiv preprint arXiv:2012.12350 (2020).

[14] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[15] Hei Law and Jia Deng. 2018. Cornernet: Detecting objects as paired keypoints.
In Proceedings of the European conference on computer vision (ECCV). 734–750.

[16] Toby Jia-Jun Li, Igor Labutov, Xiaohan Nancy Li, Xiaoyi Zhang, Wenze Shi, Wan-
ling Ding, Tom M Mitchell, and Brad A Myers. 2018. APPINITE: A Multi-Modal
Interface for Specifying Data Descriptions in Programming by Demonstration Us-
ing Natural Language Instructions. In 2018 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). IEEE, 105–114.

[17] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2019. Humanoid: A
deep learning-based approach to automated black-box android app testing. In
2019 34th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 1070–1073.

[18] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. 2017.
Focal loss for dense object detection. In Proceedings of the IEEE international
conference on computer vision. 2980–2988.

[19] Cuong Nguyen and Feng Liu. 2015. Making software tutorial video responsive. In
Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems. 1565–1568.

[20] Tomas Pfister, James Charles, and Andrew Zisserman. 2015. Flowing convnets
for human pose estimation in videos. In Proceedings of the IEEE international
conference on computer vision. 1913–1921.

[21] Ju Qian, Zhengyu Shang, Shuoyan Yan, Yan Wang, and Lin Chen. 2020. Roscript:
a visual script driven truly non-intrusive robotic testing system for touch screen
applications. In Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering. 297–308.

[22] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional
networks for biomedical image segmentation. In International Conference on
Medical image computing and computer-assisted intervention. Springer, 234–241.

[23] seatgeek. 2021. GitHub - seatgeek/fuzzywuzzy. https://github.com/seatgeek/
fuzzywuzzy. Accessed: 24/09/2021.

[24] Sara Sprenkle, Emily Gibson, Sreedevi Sampath, and Lori Pollock. 2005. Auto-
mated replay and failure detection for web applications. In Proceedings of the 20th
IEEE/ACM international conference on automated software engineering. 253–262.

[25] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri.
2015. Learning spatiotemporal features with 3d convolutional networks. In
Proceedings of the IEEE international conference on computer vision. 4489–4497.

[26] OpenCV-Python Tutorials. 2021. Template Matching. https://opencv24-python-
tutorials.readthedocs.io/en/stable/py_tutorials/py_imgproc/py_template_
matching/py_template_matching.html. Accessed: 24/09/2021.

[27] tzutalin. 2021. GitHub - tzutalin/labelImg. https://github.com/tzutalin/labelImg.
Accessed: 24/09/2021.

[28] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. 2004. Image
quality assessment: from error visibility to structural similarity. IEEE transactions
on image processing 13, 4 (2004), 600–612.

[29] Shengcheng Yu, Chunrong Fang, Yang Feng, Wenyuan Zhao, and Zhenyu Chen.
2019. Lirat: Layout and image recognition driving automated mobile testing of
cross-platform. In 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 1066–1069.

[30] Xiaoyi Zhang, Lilian de Greef, Amanda Swearngin, Samuel White, Kyle Murray,
Lisa Yu, Qi Shan, Jeffrey Nichols, Jason Wu, Chris Fleizach, et al. 2021. Screen
Recognition: Creating Accessibility Metadata for Mobile Applications from Pixels.
In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
1–15.

[31] Xiaoyi Zhang, Anne Spencer Ross, Anat Caspi, James Fogarty, and Jacob O
Wobbrock. 2017. Interaction proxies for runtime repair and enhancement of
mobile application accessibility. In Proceedings of the 2017 CHI conference on
human factors in computing systems. 6024–6037.

[32] Dehai Zhao, Zhenchang Xing, Chunyang Chen, Xin Xia, and Guoqiang Li. 2019.
ActionNet: Vision-based workflow action recognition from programming screen-
casts. In 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 350–361.

[33] Di Zhong, HongJiang Zhang, and Shih-Fu Chang. 1996. Clustering methods for
video browsing and annotation. In Storage and Retrieval for Still Image and Video
Databases IV, Vol. 2670. International Society for Optics and Photonics, 239–246.

https://doi.org/10.1145/3491102.3502073
https://github.com/seatgeek/fuzzywuzzy
https://github.com/seatgeek/fuzzywuzzy
https://opencv24-python-tutorials.readthedocs.io/en/stable/py_tutorials/py_imgproc/py_template_matching/py_template_matching.html
https://opencv24-python-tutorials.readthedocs.io/en/stable/py_tutorials/py_imgproc/py_template_matching/py_template_matching.html
https://opencv24-python-tutorials.readthedocs.io/en/stable/py_tutorials/py_imgproc/py_template_matching/py_template_matching.html
https://github.com/tzutalin/labelImg

Extracting Replayable Interactions from Videos of Mobile App Usage , ,

7 APPENDIX

, , Chen, et al.

Swipe Left/Right will not change title

And have more than 3 items change

vs. Tap change the title

(a) Swipe Left (b) Tap “Headphone Safety”

The First UI State The Second UI StateA Frame in Animation The First UI State The Second UI StateA Frame in Animation

Figure 6: Examples of patterns that our interaction classification heuristics examine to classify a swipe left interaction, in-
cluding (a) a swipe left interaction will likely change at least 3 text elements, and will not change the UI title, and (b) a tap
interaction instead is likely to change the title.

Swipe Up/Down will not change title

And have more than 5 items change

vs. Tap change the title

(a) Swipe Up (b) Tap “Other”

The First UI State The Second UI StateA Frame in Animation The First UI State The Second UI StateA Frame in Animation

Figure 7: Examples of patterns that our interaction classification heuristics examine to classify a swipe up interaction, includ-
ing (a) a swipe up interaction will likely change several text elements, but will not change the UI title, and (b) tap interaction
instead is likely to change the title.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Identifying Interactions on User Interfaces
	2.2 Replaying User Interactions

	3 System
	3.1 Phase 1—Video Segmentation
	3.2 Phase 2—Interaction Classification
	3.3 Phase 3—Interaction Localization for Tap Interactions
	3.4 Phase 4—Interaction Replay

	4 Evaluation
	4.1 Datasets
	4.2 Phase 1—Video Segmentation
	4.3 Phase 2—Interaction Classification
	4.4 Phase 3—Interaction Localization
	4.5 Phase 4—Interaction Replay

	5 Discussion
	6 Conclusion
	References
	7 Appendix

